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Forward

The information in this report vas assembled for NASA Goddard Space

Flight Center under contract no. _AG5-956. The work was carried out at

the Department of lechanical and laterials _ngineering at Vright State

University. Dr. Vilbur _ankey, Dr. ]uhammad Rahman, Wr. Scott Thomas

and lr. Joseph Schmalhofer provided technical assistance to the authors

for the completion of this report at different stages.

The various tasks described in this report dealt with numerical and

experimental analysis of a thin liquid film on a rotating and stationary

disk related to the development of an absorber unit for a high capacity

spacecraft absorption cooling system. The idea that was focused upon in

this report was the creation of an artificial gravity by the use of a

centrifugal field. The basic phenomena related to the fluid flow and

heat transfer on rotating systems that have been reported during this

effort can be applied to other areas of space systems as well.
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Section I

!

ONE-DI](ENSIONA[. COMPUTATION OF TSIN LIQUID FILM FLOVS

1.1 SUIBtARY

The flow of a thin liquid film with a free surface along a horizontal

plate which emanates from a pressurized vessel is examined numerically. In

one g, a hydraulic jump was predicted in both plane and radial flow, which

could be forced away from the inlet by increasing the inlet Froude number

or Reynolds number. In zero g, the hydraulic jump was not predicted. The

effect of solid-body rotation for radial flow in one g was to "wash out"

the hydraulic jump and to decrease the film height on the disk. The liquid

film height under one g and zero g was equal under solid-body rotation

because the effect of centrifugal force was much greater than that of the

gravitational force. The heat transfer to a film on a rotating disk was

predicted to be greater than that of a stationary disk because the liquid

film is extremely thin and is moving with a very high velocity.



1.2 INTRODUCTION

The study of thin liquid films has been performed by many researchers

in the past due to the high heat transfer rates that can be achieved. Even

though the heat transfer to thin films falling down a vertical plate is

quite high, much better heat transfer rates can be realized when the film

is generated by the impingement of a liquid jet onto a surface that is

perpendicular to the jet. This is due to the fact that in most cases the

film velocities are greater than those of a falling film. Since it is

difficult to examine the entire flow field from the impinging jet to the

perpendicular thin film, it is proposed to study only the thin film. This

is accomplished by the following mechanism: the liquid is pressurized in a

container and emanates from a slot which generates the thin film on a

horizontal plate. Vith this situation, the height and mean velocity of the

film will be known boundary conditions, which will aid in determining the

characteristics of the film downstream. After the structure of the liquid

film has been examined, the amount of heat that can be transferred to it

can be found. Furthermore, in this study it is also desired to understand

the effects of centrifugal force and zero gravity on the flow field. If

the film is generatedou a spinning disk, it is expected that the film will

accelerate and become thinner, since the centrifugal force acts in the main

direction of the flow. This acceleration of the liquid film will increase

the amount of heat that can be transferred from the spinning disk to the

film. The effect of zero g on the flow is also examined to determine the

nature of the liquid film height when the gravitational field across the

film is not present. The combined effects of centrifugal acceleration and

a zero g environment on the fluid characteristics and heat transfer to a

2



thin film are not known at present.
i

fundamental research will become

programs like the Space Station where

It i§ felt, however, that this

important in the future because of

improved heat exchangers will be

needed. This research will also be instrumental in the development of an

absorber unit for a spacecraft vapor-absorption heat pump system, which was

the motivation for the present work.

iany investigations have been carried out concerning thin liquid films

created by impinging jets and/or spinning disks because of the numerous

applications where the improved heat or mass transfer is desirable.

Sparrow and Gregg (1959) analytically determined the condensate thickness

on a rotating disk in a large vessel of quiescent saturated vapor. Vatson

(1964) analysed a free-falling jet which impinges on a horizontal plane

using a similarity solution. Chaudhury (1964) used a similarity solution

to analyse the heat transfer in the thin liquid layer on a horizontal plate

on which a liquid jet impinges, troesty et al. (1967) studied the use of

thin films under centrifugal force as an aid to blood oxygenation. The

flow of a liquid film on a rotating disk was examined by latsumoto et al.

(1973) in connection with the atomization of a liquid for spray drying and

the promotion of chemical reactions or absorption between gases and

liquids. Rauscher et al. (1973) analysed the laminar flow of a thin film

on a rotating disk by employing the asymptotic expansion technique.

Eliseev (1983) examined the spatial stability of liquid films on a rotating

disk by the asymptotic expansion technique. The study of thin films in

regard to spin coating deposition of thin solid films was carried out by

Jenekhe (1984). Needham and lerkin (1987) theoretically studied thin

axisymmetric liquid films on a horizontally rotating disk to determine the



criteria for stability of the film. Katto and YokQya(1988) analyzed the

existing experimental data for the critical heat flux of a disk heater

cooled by an impinging liquid jet and gave an equation correlating the

data.

The motivation of the present work is the study of thin liquid films

which will be used in space-based centrifugal heat exchangers and vapor

absorption heat pumps. Since a falling film cannot be achieved in a zero g

environment, it is natural to consider the possibility of using the

artificial gravity created by the centrifugal force on a rotating disk to

generate a thin film.

In the present study, the governing equations and boundary conditions

are presented for two situations of a thin liquid layer emanating from a

pressurized vessel and traveling along a horizontal plate with a constant

initial height and uniform initial velocity as shown in Fig. 1.1. The

first case is when the liquid flows along a channel with a constant width,

which is shown in Fig. 1.2a. This situation is the same as open channel

flow, but since the liquid height is very thin the effect of viscosity must

be accounted for. The second case, which is shown in Fig. 1.2b, is when

the liquid originates between two parallel disks, and then spreads out

radially over the bottom disk in a free surface thin film because the

diameter of the upper disk is much smaller than that of the lower disk.

This situation is similar to a jet of liquid impinging onto the center of a

horizontal disk, except that the height _nd the mean velocity of the liquid

film are known at a specific radial location. In the case of radial flow,

thc rotational acceleration will be modeled as solid-body rotation, where
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the centrifugal forces act only in the radial direction.

It is desired to numerically solve for the liquid height at any

distance down the length of the plate for different Froude numbers and

_eynolds numbers specified at the inlet. The heat transfer from the plate

will also be studied for the case of simple heating with no evaporation at

the free surface. Since the inlet Froude number may be greater than unity,

it is possible that a hydraulic jump will occur at some point in the

computational domain. A hydraulic jump is when the flow suddenly changes

from supercritical (Fr > i) to. subcritical (Fr < 1) flow, which is

accompanied by a sudden increase in the liquid height. This is analogous

to the shock wave in gas dynamics when the flow changes from supersonic

(_ > 1) to subsonic (_ < 1) flow in a very short distance. The similarity

between the hydraulic jump and the shock wave in gas dynamics suggests

using the familiar approach of modeling the flow as a transient phenomenon

and allowing the solution to march in time to achieve the desired

steady-state results. To the authors' knowledge, this approach has not

been applied to this type of problem before. It should be emphasized that

conventional numerical techniques that are applied to 2- or 3-dimensional

problems cannot be used directly to solve this particular problem because

the location of the free surface is unknown prior to the start of the

calculations.

1.3 FLUID FLOW ANALYSIS

The conservation of mass, momentum, and energy in the general

coordinate system can be expressed in the following compact form for a thin

incompressible liquid film with constant properties.



v v - o . (1.3.1)

-4

DV _V2V -_
p_- = Vp + + pg (1.3.2)

DT
_- = aV2T (1.3.3)

In the general coordinate system given in Fig. 1.1, the direction that

is parallel to the plate in the main direction of the flow will be denoted

by r and the direction that is normal to the plate will be denoted by z.

The velocity vector V has three components; w, v, and u, where w is in the

r-direction and v is in the y-direction. The component of velocity in the

x-direction, as shown in Fig. 1.2a, is set equal to zero for plane flow.

The component of velocity in the O-direction, as shown in Fig. 1.2b, is

equal to u for radial flow.

Several assumptions are made in order to reduce the complexity of the

governing equations. Any changes in the variables with respect to the 0-

or x-directions are set to zero. In the gravitational field, g, only the

component across the film thickness, gy, is considered.

assumptions are imposed on the governing equations, neglect the

diffusion terms in the main direction of the based on an

order-of-magnitude analysis. At the free surface, effects of

interfacial shear stress

It should be noted that the effect of surface tension may be significant

near the inlet and outlet of the domain and in the hydraulic jump region.

The pressure in the liquid film is defined as the difference between the

The boundary layer

which

flow

the

and the surface tension are assumed to be zero.

8



actual pressure and the atmospheric pressure, so at the free surface the

pressure is equal to zero. For the case of radial flow, it is assumed that

the velocity component in the _direction is u = Cr, i.e., solid-body

rotation. By an order-of-magnitude analysis, this assumption is valid for

small values of the Rossby number (Ro < 1).

The boundary and initial conditions for the governing equations in

fixed coordinates are those on the flat plate and on the free surface of

the liquid.

y - O: W = O_ U = wr, v = 0

a6 a6 aw

y = 6: v = _Ff + W_T_, P = O, _F_ = 0

r = rl: w = Win , v = 0, 6 = 6in

t = O: w = Wo, v = 0

The boundary condition involving v at the free surface is the

kinematic condition for time-dependent problems. The boundary condition

involving _w/_y at y = 6 corresponds to neglecting the interracial shear

stress at the free surface.

• .'" _'! '_.:i.:. .." '. " :. _": ".-" • - i" "

The continuity equation and the conservation of momentum equations in

the r- and y-directions can be integrated with respect to the y-direction

across the thin liquid layer by using Leibniz's rule and the kinematic

condition at the free surface. Due to the boundary-layer assumptions, the

conservation of momentum equation in the y-direction results in a balance

between the pressure gradient and the gravitational force. This equation

is then substituted into the r-direction momentum equation. It is assumed

9



that the velocity in the main direction of the flow. is constant across the
i

thin film, so that

6 w2 dy = V26
0

It should be noted that this is not • major assumption. For example,

for a parabolic velocity profile, the left-hand side is equal to 6V26/5.

The resulting one-dimensional time-dependent equations in the general

coordinate system are given in the following form:

--%2_1_ (r_V6) + 2_ =006 (1.3.4)
r

y=O

To properly assign the boundary conditions of the flow, the

characteristic behavior of the flow will be examined. The governing

equations can be cast in the characteristic form by the following analysis.

:The governing equations (1.3.4 and 1.3.5) can be rearranged by

subtracting W continuity equation from the momentum equation.

1 o_6 V _6 o_V ,_V

3V + vbV I _6 2

io



q

The characteristic form of the equations are obtained

the continuity and momentum equations:

by linearizing

I_ + V 0 ] 6

in

where

2
ain = g_in

$1 = - --r

S2 = rw 2 1 - _

These two equations can be represented by the following characteristic

equation.

1 1

+ ci r_- = Si

:_ The Reimann invariants and the physical wave speeds are given in the

following table.

I i c i S i

• + a.l/ + ain(6/6in) I/in in ainS1 + S2

l/ - ain(6/6in ) Vin - ain -ainS 1 + S 2

11



in examination of the characteristics reveals that the first invariant

will always propagate downstream. The direction of propagation for the

second invariant depends upon whether the flow is supercritical or

subcritical. For supercritical flow (i.e., Fr > 1), the second invariant

propagates downstream, so the boundary conditions on V and 6 will both be

assigned at the inlet of the flow field. For subcritical flow (i.e.,

Fr < 1), the second invariant propagates upstream, so the boundary

conditions must be assigned at the inlet and the outlet of the flow field.

The following assumption is made to simplify the governing equations

so that the film height can be eliminated from the equations.

This assumption results in the following quasi - steady governing

equations:

r_V_
fl

- _ = constant (1.3.6)

By using this assumption, it is understood that the unsteady solutions

with respect to time are not precisely accurate, but the accuracy of the

steady-state solution is not affected.

19



The following analysis for the skim friction coefficient is given

since the shear stress at the wall is not known. Vhen the boundary layer

on the plate is much smaller than the film thickness, i.e., developing

flow, it is assumed that the boundary layer is the same as when there is a

uniform far-field boundary. Therefore, when _ > _B' where 6B is the

Blasius boundary layer thickness, the Blasius skin friction coefficient

will be employed to approximate the shear stress term. Vhen the boundary

layer reaches the free surface (i.e., 6 = _B), a parabolic velocity profile

is used to approximate the shear stress term. The Blasius boundary layer

thickness is given by

_B 5.0

(r - rin )

The Blasius skin friction coefficient is as follows:

cf=
0.664

The Blasius skin friction coefficient can also be presented in terms

of the Blasius boundary layer thickness.

cf(Blasius) -
3.32

[ w_B I

For _ = 5B, it is assumed that the velocity profile is parabolic.

12



(1.3.s)

The coefficient of skin friction is

r _

cf(parabolic) = w = y = 0 _ 6

V6

The two skin friction coefficients match when

or

cf (Blasius) = cf (parabolic)

The value of the skin friction will be determined in the following manner.

6B=

5.0(r-rin)

V(r- rin )

L/

6 6:

0 < 7B < 1.81 cf -

6
> 1.81 cf =

0.664

I W(r - rin )

The governing equations are nondimensionalized in the following manner

14



to simplify the analysis and to generalize the results.

V - V '6 6+ r t._ =K--- .E:-- = r
V. in in in

in

v? v
in _ Fr 2. in _ Re. in - Ro.

g_in ,n u in Wrin In

6B +

._- = 6B = dimensionless boundary layer thickness
in

The Reynolds number of the flow was chosen to nondimensionalize the

governing equations instead of the Ekman number because the Reynolds number

is needed when the flow is stationary.

After eliminating the dimensionless film height from the momentum

equation with the continuity equation, the dimensionless governing equation

is as follows:

VT + VfJG_"_ = H (1.3.9)

where

G = Y__ + i_n [_)2

and

il = A _ - for 0 < --,: 1.81

(iinROin)2 - 3el_in • 6 B

15



or

_-_I/i_n_O_n/_ I_°_n_i_i-io_nl _or___ /___/

where the dimensionless boundary layer thickness is given by

(_- _in )

t/Me in
(1.3.13)

The dimensionless initial and boundary conditions are given as follows:

v(0,_)-- 1

V(_,iin) = 1

These conditions correspond to a constant velocity across the region at the

initial time and a constant inlet velocity at all times. Since the

steady-state results are the only concern due to the constraints made on

the mathematical modeling (_/_t = 0), the specification of the initial

condition is required only for the numerical iteration scheme.

An artificial viscosity term (flVi) is included in the governing

equation to dampen numerical oscillations in the solution (Anderson et al.,

1984). The oscillations are common] 3' referred to as the Gibb's phenomenon,

which occurs near a double-valued point in the solution, such as a

hydraulic jump or a shock wave. This term reduces the numerical

16



oscillations in the immediate vicinity of the hydraulic jump, but does

affect the numerical solution elsewhere in the domain.

1.4 HEAT TRANSFER ANALYSIS

not

It is desired to find the amount of heat transferred from the plate or

disk to the liquid when the plate is heated. This analysis assumes that

the velocity of the thin film is approximated by the similarity profile

presented in equation (1.3.8). The temperature profile across the thin

film is assumed to be a quadratic function, with the coefficients

determined by the boundary conditions imposed at the surface of the plate

and the free surface. The boundary conditions are a constant heat flux at

the plate and the free surface of the liquid film is adiabatic, which

corresponds to simple heating with no evaporation at the free surface. The

boundary conditions are given as:

 Yy=6 ]= o (1.4.1)

y=O

(1.4.2)

The temperature distribution across the thin film is

T = Tw - _y + _ y2 (1.4.3)

The mixed-mean temperature of the film is given by the following equation



1
Tb = _ o wT dy = Tw -

The heat transfer coefficient is defined by

q 5K

h = (Tw _ Tb ) =_
(1.4.5)

Therefore, the heat transfer coefficient can

liquid film height.

be found in terms of the

The modified Nusselt number is defined in the following manner:

hi lll3 I13Nu : K --
(1.4.6)

This definition has been used previously in the literature concerning thin

falling films. For a zero g situation, the Nusselt number is defined, in

terms of the liquid film thickness:

* h5
Nu : K--: 2.5 (1.4.7)

" r " -- . • • - .

For practical applications, the mixed-mean temperature of the fluid should

be known. Therefore, the following analysis is given to find the

mixed-mean temperature for the case of simple heating with no evaporation

at the free surface for plane and radial flow. This analysis follows the

same pattern as was accomplished for the momentum equation of the problem.

The conservation of energy will be integrated across the thin film in order

18



to find the mixed-mean temperature.

The conservation of energy equation is

_+ K (1.4.8)

The assumption is made that the diffusive term in the r-direction is zero.

a"T vvr _] #2T
+ w_ + v = a_--,_ (1.4.9)

The conservation of energy equation is integrated across the thickness

of the film by using Leibniz's rule and the kinematic condition at the free

surface. Since the steady-state solution of the fluid velocity will be

known from the fluid mechanics analysis, the steady solution of the

conservation of energy equation will be found. The continuity equation

(1.3.6) and the conservation of energy equation are

r2V6 = _ = constant

_Tb _a
(1.4.10)

Implementing the heat flux boundary conditions corresponding to simple

heating with no evaporation at the free surface results in the following

equation.

]9



_rb (2_r)lq (l.4.ii)

r_- = qpCp

This equation can be integrated directly to determine the difference in the

mixed-mean temperature between the inlet and any point in the r-direction.

• ' p r •

1.5 NUNERICAL SOLUTION PROCEDURE

Due to the similarity between the hydraulic jump and the shock wave in gas

dynamics, the MacCormack explicit method (Anderson et al., 1984), which is

quite often used for the solution of compressible flow problems, will be

used in the present numerical analysis of this incompressible film flow.

Since it is an explicit method, the unknown variables are found in terms of

known quantities, as opposed to implicit methods which must solve a matrix

equation to obtain the solution of the problem.

The governing equation for the present problem is equation (1.3.9):

The forward-predictor finite-difference

equation is forward in time and space.

equation for the governing

(1.5.i)

2o



The finite-difference equation based on the predict.ed
J

forward- time, backward- space differencing scheme is:

solution using a

At

The corrected solution is the arithmetic average of the past and

predicted solutions.

V_+l = _1 [y_ + (v_+-Tr),]

v_+l = 1_ I Vkn + v_+-Tf [1 i_ __ [ G_ ;T G__+-_I]] ÷ Artt_+-_ } (1.5.2)

Since the forward-predictor velocity is in terms of a forward-space

approximation, an outlet boundary condition on the velocity is needed.

For the case of one g, it is assumed that the Froude number at the outlet

is unity, which is a common boundary condition when a liquid falls over an

edge because the liquid accelerates from a subcritical velocity to a

supercritical velocity through the critical velocity. It was

experimentally observed, however, that for thin films the surface tension

greatly alters this boundary condition. The Froude number at the inlet and

the dimensionless velocity at the outlet are related as follows:

[ ]Jt3 2/3Vou t = Frin

21



For the zero g case and when the Rossby qumber i_ Ro < I, the slope of

the dimensionless velocity at the last node is set equal to the slope at

the next to last node for the outlet boundary condition.

The solution of the governing equation using lacCormack's method proceeds

as follows:

The parameters pertaining to the numerical domain and the inlet and

outlet boundary conditions are specified.

• The initial velocity distribution is input to the program.

The variables G and _ are computed using the velocity profile at the

old time step.

The velocity distribution at the midpoint time step is calculated in

terms of the velocity, G, and H at the old time step. An outlet

boundary condition is needed in this step because of the forward-space

approximation.

The variables G and H are computed again by using the velocity profile

at the midpoint time step.

The ve]_city distribution at the new time step is

inlet boundary condition is used in this step

backward-space approximation.

calculated. The

because of the

22



• The values of the velocity distribution at the new time step are used

i

as the initial velocity profile for the next iteration.

• The process is repeated until steady values are reached.

In explicit schemes, the magnitude of the time step is chosen based

upon a Courant number, which is defined for the present problem in the

following manner.

C = y_-Ar[w + ra]_w 5_A_r(i + Ro -1)

In this study, the grid size was set to a specific value and the time

step was varied to avoid convergence difficulties. The largest time step

that did not lead to a divergent solution was then used in the

calculations. The following table is a general guideline which was used to

determine the time step size.

Flow situation

Plane flow

Radial flow

Radial flow with rotation

Courant number, C

< 1.0

<.0.5

<0.i

One hundred grids were used in the plane flow calculations. For radial

flow,

damped,

grids.

500 grids were used because the governing c,tuation was very lightly

so that the numerical oscillations were excessive with only 100

There was no significant change (< 0.1 percent) in the numerical

23



results when the aforementioned grid specifications were reduced by

one-half to check the grid independence of the solution.

1.6 RESULTS I_ DISCUSSION

The thicknesses of free surface films in plane and radial flow have

been calculated numerically. In addition, the Nusselt number" was

calculated for simple heating with no evaporation at the free surface with

water as the working fluid. The results of the one-dimensional

quasi-steady governing equation of fluid motion are given in Figs. (1.3 -

1.7). The heat transfer results are shown in Fig. 1.8 for plane and radial

flow in one g and in Fig. 1.9 for radial flow with solid-body rotation.

Figure 1.3 shows the solution for channel flow as it progresses in

time. It can be seen that the supercritical portion of the flow develops

very quickly while the subcritical region and the exact location of .the

hydraulic jump takes more time to reach the steady state. The Gibb's

phenomenon can easily be noticed in the transient solutions of the

governing equation, but the oscillations become more damped in the steady

solution_ Due to the assumptions Pertaining to the governing equations, the

transient solutions of the problem are not accurate, but the steady

solutions should be acceptable. In the following figures, only the steady-

state solutions are given. It is clear that the velocity profile in the

immediate vicinity of the hydraulic jump is not a good representation of

the flow field due to the transient nature of the jump. However, this does

not affect the numerical results in the supercritical or subcritical

regions as well as the location of the jump. In order to capture the
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details of the jump, a two-dimensional model using bQdy-fitting coordinates
J

is needed.

As can be seen in Fig. 1.3, the film thickness increases along the

plate as the fluid travels away from the inlet of the region. The fluid is

prevented from rolling back due to the action of gravity by the momentum of

the fluid in the main direction of the flow. The reason that the film

thickness increases with distance in the supercritical region is that the

friction at the interface between the fluid and the plate slows the fluid,

which translates into an increase in the film thickness due to continuity.

The effects of changing the inlet Reynolds number and the inlet Froude

number in plane flow are presented in Fig. 1.4. The graphs in the

left-hand column of the legend show the dimensionless liquid height _hen

the Froude number is held at Frin = 10.0 and the Reynolds number is varied

for Rein = 25.0, 50.0, and 75.0. By increasing the inlet Reynolds number,

the location of the hydraulic jump moves downstream and the dimensionless

height of the liquid at all points in the domain decreases. Physically,

increasing the Reynolds number can be interpreted as increasing the

inertial forces oa the fluid, so one would intuitively expect that the

velocity of the fluid would increase as the Reynolds number increases.

This increase in the fluid velocity is correlated to a decrease in the film

thickness through the continuity equation.

The graphs in the right-hand column of the legend in Fig. 1.,1 present

the dimensionless liquid film height when the Reynolds number is constant

at Rein -- 100.0 and the Froude number is varied for Frin -- .5.0, 7.0, and

26
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9.0.

Froude number increases,

The dimensionless height

generally lies along

changing in this case.

decreasing the effect

The location of the hydraulic jump moves downstream when the inlet

which has been seen in qualitative experiments.

of the liquid in the supercritical region

the same line because the viscous forces are not

Increasing the Froude number can be thought of as

of the gravitational force, so by increasing the

inlet Froude number, the flow approaches the zero g case. In the zero g

situation, as shown in Fig. 1.5 for plane and radial flow, the hydraulic

jump does not occur because the flow at all points in the domain is

supercritical, since the Froude number approaches infinity in zero g. In

Fig. 1.5, the dimensionless film height decreases as the Reynolds number

increases because the inertial forces on the film flow are greater.

In Fig. 1.6, the inlet Froude number and the inlet Reynolds number in

radial flow are varied parametrically. When the inlet Froude number is

held constant and the Reynolds number is increased, the behavior of the

flow is similar to plane flow in that the film thickness decreases and the

hydraulic jump moves downstream. The film thickness in the supercritical

region, however, decreases below the initial thickness downstream from the

_ inlet, at high Reynolds numbers. This is due to the increase in the flow

area downstream as the flow spreads out radially. After this initial

decrease in the film thickness, the film height increases in the

supercritical region even though the flow is spreading out radially. This

is due to the fact that the frictional effect is greater than the effect

due to the increase in the flow area. The friction at the plate slows down

the flow and increases the film thickness. As shown by Rahman et al.

(1989), the liquid film height in the supercritical region may or may not
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have a minimum value other than the inlet height, depending

coefficient of friction at the plate and the inlet Froude number.

upon the

The effect of increasing the Froude number while the Reynolds number

remains constant in radial flow is also shown in Fig. 1.6. The

supercritical regions of the three cases overlap as in channel flow because

the viscous forces on the liquid film are not changing. The hydraulic jump

is moved downstream from the inlet as the Froude number is increased.

Figure 1.7 presents the effect of solid-body rotation on the

dimensionless liquid film height in radial flow for one g and zero g. The

Rossby number of ROin = 1010 signifies that the inertial forces are

dominant in the flow, so that a profile similar to the previous results is

obtained.

-1
10 and

For the other cases presented where the Rossby number is Ro. :
in

10 -2 , the hydraulic jump is completely washed out and the

thickness of the fluid decreases at all points in the domain, which is

physically realistic. The results for the low lossby numbers also show

that the dimensionless liquid film height is the same whether the

gravitational body force is present or not. This is due to the fact that

the centrifugal body force in this case is much greater than the

gravitational body force.

Figure 1.8 presents the Nusselt number versus the dimensionless

distance for plane and radial flow under one g. For these calculations,

the values in equation (1.4.6) were chosen to be _in = 2.54 x 10 -4 m,

K = 0.682 W/m-K, u = 2.90 x 10 .7 m2/s, and g = 9.81 m/s 2. The values of

the thermal conductivity and the kinematic viscosity correspond to water at
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373 K. ts would be expected, the heat transfer increases as the Reynolds

I

number increases because the height of the film decreases at all points

along the plate.

Figure 1.9 presents the Nusselt number for the case of solid-body

rotation in radial flow under one g. The heat transfer to the liquid in

this case is two orders of magnitude higher than that without rotation

because the liquid film becomes extremely thin and the velocity of the film

is very high.

It should be noted that while the heat transfer results that were

presented are for thin films under one g, the heat transfer to thin films

in a zero g environment can also be calculated with equation (1.4.5).

1.7 COnCLUSIOnS

In studying plane and radial flows experimentally, it can be seen that

the flow can experience a hydraulic jump. This is a "mixed" flow situation

where the flow changes from a supercritical condition to a subcritical

condition with a sudden increase of the liquid height and a decrease in the

velocity of the liquid. The similarity between the hydraulic jump and the

shock wave in gas dynamics suggested the use of the approach where the flow

is modeled as a transient phenomenon and allowed to march in time to

achieve the desired steady-state results. Therefore, the equations of

motion including the transient terms were integrated across the thin liquid

layer, nondimensionalized, and discretized using the iacCormack explicit

method to solve for the velocity and height of the liquid film in Cartesian
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and radial coordinates. Also, the steady-state.heat transfer from the

plate to the liquid was examined for the case of simple heating with no

evaporation at the free surface. Since the numerical method of solution is

explicit, large amounts of computer storage were not necessary.

For plane flow in one g, a hydraulic jump was predicted which could be

forced away from the inlet by increasing the initial Froude number or

Reynolds number, which agrees with what has been found in qualitative

experiments. In zero g, the liquid film height increased monotonically, so

that a hydraulic jump was not predicted.

For radial flow in one g, the liquid film height first decreased for

high Reynolds numbers due to the increase of the flow area, and then

increased to form a hydraulic jump. The hydraulic jump in radial flow

could also be forced away from the inlet by increasing the initial Froude

number or Reynolds number. In zero g, the hydraulic jump was not predicted

in radial flow. The effect of solid-body rotation for radial flow in one g

was found to thin the liquid film and "wash out" the hydraulic jump, which

is physically realistic. The dimensionless film thickness under one g and

zero g was the same for solid-body rotation because the centrifugal force

was much greater than the gravitational body force. The heat transfer from

the rotating disk was found to increase dramatically when under solid-body

rotation compared to no rotation because the liquid film is very thin and

moves with a high velocity.
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Section II

EId_EKI_NTM.,i[EASUREI_NT OF FILl _IGIT AND VISUALIZATION OF FLO¥

2.1 SUit_RY

In this experimental study, the thickness of a thin liquid film with a

free surface on a stationary and rotating disk is measured with a

non-obtrusive capacitance technique. The measurements are taken when the

rotational speed ranges from 0 300 RPI and the flow rate varies from

7.0 - 15.0 LP_. A photographic study of the

performed and the results are presented

stationary, a hydraulic jump is formed on the

thin liquid film was also

herein. When the disk is

disk, which separates the

supercritical and subcritical regions. As the flow rate of the fluid

increases, the hydraulic jump is moved away from the center of the disk.

The liquid film thickness in the supercritical region is affected by the

inertial and frictional forces on the fluid and by the radial spreading of

the film across the disk. The film thickness in the subcritical region is

mainly determined by the surface tension of the fluid because the radius of

curvature at the outer edge of the disk, which is nearly constant for flow

rates up to approximately 13.0 LPN. Fhen the disk is rotating, the film

thickness depends upon the frictional, inertial, and centrifugal forces

acting on

effects of

centrifugal

true.

the

the liquid.

friction and

force, while

In the region near the center of the disk, the

inertia are greater than that due to the

at the outer edge of the disk the opposite is

I flow visualization study was carried out to examine the nature of

free surface of the thin liquid film when the disk is stationary and
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rotating. Vhen the disk is stationary, surface waves were present in the

supercritical and subcritical regions at all flow rates studied. The waves

in the supercritical region have smaller amplitudes than those in the

subcritical region, it the hydraulic jump, a "roller" with a circular

cross section was found at low flow rates, is the flow rate increased, the

roller flattened until it merged with the hydraulic jump. The surface

tension at the edge of the disk held the thickness at this location nearly

constant, except at higher flow rates where the inertial forces of the

fluid became greater than the surface tension and decreased the height of

the fluid at the edge. This effect was also present at low rotational

speeds, where the surface tension created a standing wave at the edge of

the disk. As the rotational speed increased, the film changed from the

wavy-laminar region to a region in which waves ran nearly radially across

the disk on top of a thin substrate of fluid. These waves appeared to be

the mechanism through which most of the fluid drained from the disk.

2.2 INTIODUCTION

The heat transfer from a rotating disk to a thin film has been

recognized in the past to be superior to conventional falling films because

the centrifugal force tends to thin and accelerate the film, which

translates into higher heat transfer coefficients. As a first step in

determining the heat transfer to a thin film, it is _roposed to

experimentally study the hydrodynamic characteristics of a thin film with a

free surface flowing over stationary and rotating disks. The present

experimental investigation is directed toward the use of a thin film on a

rotating disk to promote the absorption of a vapor into the liquid on the
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disk. Specifically, the absorber of a space-based vapor-absorption
i

refrigeration system will use

centrifugal force on a rotating disk to

refrigerant vapor into the absorbent

produced in a microgravity environment.

a liquid film which is thinned by the

enhance the absorption of the

because a falling film cannot be

The vapor-absorption cycle is more

appropriate for a microgravity application because the vapor compressor is

replaced by a liquid pump, which is lighter, requires less maintenance, and

is easier to manufacture for space-based applications.

To properly study any problem, the previous studies on the subject

must be thoroughly investigated. Each of the following researchers have

experimentally examined the flow of thin liquid films. A brief description

of their methods and conclusions are provided.

Vatson (1964) analysed a free-falling jet which impinges on a

horizontal plane. The jet spreads out radially in a thin film and is

surrounded by a hydraulic jump, outside of which the thickness of the

liquid is much greater. Vatson experimentally measured the diameter of the

hydraulic jump (rl) with dividers, the depth of the fluid outside the jump

(d) with a point gage, and the flow rate (q) with a measuring jar and stop

watch. The experimental data ranged from 25.4 < r 1 < 177.8 u, 3.30 < d <

16.5 u, and 0.73 < _ < 26.8 LP|. The jet Reynolds number Re = q/av ranged

from 7 x 103 to 1.2 x 105 , where a is the radius of the jet. The

theoretical results of the location of the hydraulic jump and the depth of

the liquid outside the jump _ere compared to experimental results _ith a

satisfactory agreement.
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Espig and Hoyle (1965) experimentally_easured the maximumthickness

of a liquid film on a horizontal rotating disk. The maximum thickness is

the height of the film which is measured to the crest of the waves on the

film. Measurements were taken by using a needle probe which was lowered

with a vernier, which completed an electrical circuit when the probe

touched the film surface. The Reynolds number Re = (4 Q/_D) ranged from

10 to 600, where q is the mass flow rate, _ is the dynamic viscosity, and

D/2 is the distance from the center of the disk. The flow conditions were

also observed visually with a stroboscope which showed rivulets,

circumferential waves, and helical waves. The experimental results were in

agreement with the theoretical and experimental results of previous

authors.

Butuzov and Rifert (1972) experimentally measured the heat transfer

of condensing steam onto one side of a rotating copper disk, the opposite

side of the disk being cooled with a condenser. The results for the

average heat transfer coefficient versus the disk angular speed were

presented. The disk speed varied from 10 to 224 rad/sec and the heat flux

ranged from 2 x 104 to 19 x 104 V/m 2. The experimental Reynolds number of

the condensate was compared to the theoretical results with an agreement to

within 5 10 percent. The theoretical results were obtained by using a

previously derived equation for the thickness of a laminar liquid film on a

rotating disk. This was related to the flow rate of the condensate on the

disk for steam condensation.

Charwat et al. (1972) studied the effects of varying the viscosity and

surface tension of a thin liquid film on a rotating glass plate. The film
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thickness was determined by the infra-red absorption .technique, and it was
$

found that the thickness varied from 1 150 #m for flow rates up to

0.78 LPl. Concentric, spiral, and irregular waves were found on the

surface of the film, and were strongly affected by varying the viscosity

(1 - 2.5 cP) and surface tension (20 - 72 dynes/cm).

latsumoto et al. (1973) compared various theoretical solutions of

previous authors with a polynomial approximation for the thickness of a

thin liquid film on a rotating disk. The authors also devised an

experiment where constant temperature liquid was supplied to the center of

a rotating disk by a feed nozzle above the disk. The liquid film height

was measured along the radius by a needle attached to two micrometer

screws. The kinematic viscosity of the liquid ranged from 9.61 to 58.3 cS,

the rotational speed varied from 250 to 1500 RP_, and the flow rate ranged

from 0.3 to 1.87 LPl. It was concluded that a polynomial of fourth degree

or higher agreed very well with the experimental results.

liyasaka (1974) compared the results of an experimental study with

those of a theoretical study of the thickness of a thin viscous film on a

rotating disk. The liquid film was generated with a jet of liquid falling

onto the center of a horizontal rotating disk. The film height _as

measured by comparing the resistance of the liquid on the disk with that of

a standard thickness of the liquid, which resulted in an accuracy of * 0.02

_. The jet Reynolds number was varied from 200 to 18,000. The theoretical

values were obtained by solving the governing equations of motion with the

boundary-layer approximation. The theoretical results include the values

of the liquid film when viscosity is and is not present. It was concluded
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that the theoretical values were in agreement with

results.

the experimental

Ishigai et al. (t977) experimentally measured the liquid film

thickness and heat transfer from a thin film generated by an impinging

liquid jet onto a perpendicular surface. The film thickness was measured

with a needle and micrometer arrangement, and a voltage source applied to

the surface of the plate. When the needle touched the surface of the film

an electric circuit was completed, which was read by an oscilloscope. The

flow rate ranged from 3.0 to 30 LPI. The experimental data of the liquid

film height was compared to the analytical equation given by Watson (1964)

with satisfactory results.

Labus and DeVitt (1978) experimentally examined the flow patterns of

the free surface of an impinging jet of liquid on a disk perpendicular to

the jet in zero gravity. This was achieved in a drop facility in which a

2.2 second period of 10 -5 g's could be sustained. Flow visualization

studies revealed that surface tension and inertia were the major forces

acting on the liquid.

Craik et al. (1981) experimentally studied the circular hydraulic jump

formed by an impinging jet of liquid on a horizontal plate. The liquid

film thickness in the region near the hydraulic jump was measured using a

light-absorption technique with a laser and a strong dye. The parameters

which _ere varied are as follows: the flow rate, 0.27 to 1.56 LPI; the jet

radius, 1.0 to 2.15 mm; the jump radius, 12.0 to 40.0 ms; and the outer

depth, 1.8 to 3.5 ms. The experimental data was compared to Yatson's
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(1964) theory with unsatisfactory results. Flow vist_alization studies were
I

performed, and an eddy just downstream of the hydraulic jump was found.

Kuzhilko et al. (1983) experimentally measured the liquid film

thickness on a horizontal rotating disk where the liquid is introduced onto

the center of the disk by an impinging jet. The film thickness was

measured by sensing electrodes embedded into the surface of the disk, whose

resistance is a function of the film thickness. The mean film thickness

was measured at radii of 30, 60, and 90 _. The angular velocity ranged

from 95 to 1900 RPI, and the flow rate varied from 0.04 to 1.2 LPI. The

mean film thickness results were correlated by an empirical equation which

predicts the data to within _15 percent in the laminar-wavy region.

Carper et al. (1986) experimentally studied the heat transfer from one

side of a rotating disk with an approximateIy uniform surface temperature.

The liquid was supplied to the center of the disk by a nozzle. The average

Nusselt number was presented for the following parameters: the rotational

Reynolds number (16,000 < Re r = cD2v < 545,000), the Prandtl number

(87 < Pr < 400), and the impinging jet _eynolds number (180 < Rej = dUj/u <

1300). D is the disk diameter, w is the angular velocity, v is the

kinematic viscosity, d is the jet nozzle diameter, and Uj is the average

jet velocity. An empirical equation for the average Nusselt number is

derived by a multiple linear regression analysis which represents 95

percent of the data to _ith_n _30 percent.

lost of the previous experimental investigations were concerned with

thin liquid films which were generated by an impinging jet onto the center
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of the rotating or stationary disk. In the psesent _tudy, the liquid film
i

is generated on the rotating disk by a circular collar which directs the

pressurized liquid onto the center of the rotating disk with a constant

initial height and velocity. This collar arrangement can be extended to

collars on each side of the disk, and then multiple disks can be stacked

onto a rotating pipe so that a very large surface area for absorption can

exist in a small volume. Also, this arrangement is amenable to numerical

simulation because of the known inlet conditions.

The effect of two parameters on the thickness of the liquid film were

studied: the flow rate (7.0-15.0 LPM) and the rotational speed (0-300 RPI)

at the steady state. The liquid film thickness was measured with a

non-obtrusive capacitance probe and digital micrometer arrangement. The

characteristics of the waves on the free surface were studied with a video

camera at low and high shutter speeds.

2.3 EIPELIENTIL SETUP

The purpose of this experiment was to measure the liquid film

thickness on a stationary and rotating horizontal disk where the liquid

emanates from a pressurized vessel in the center of the disk. In the

future, this apparatus can also be used to determine the heat transfer from

the heated disk to the thin liquid film when the disk is stationary and

rotating. De-ionized water was used as the working fluid because the

properties are well-known and it is non-toxic.
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The schematic of the experimental setupjs shown in Fig. 2.1. The
u

specifications of all of the equipment used in this experiment are listed

in Appendix B following this report. The 406.4 m dia. rotating disk [1]

is mounted on a high-precision stainless steel spindle [3] which is hollow

from the 101.6 mm dia. stainless steel collar [2] to the rotating union

[21]. The rotating disk is made of aluminum with a surface finish of

3.8 x 10-4 n. The working fluid flows from the circulating pump [25]

through the stationary pipe to the rotating union, which couples the

stationary pipe and the hollow spindle. The liquid then passes up above

the rotating disk and through eight. 3.17 mm dia. radial holes in the hollow

rotating spindle, which are covered by the collar. The collar directs the

eight liquid streams down and outwardly so that the fluid is directed onto

the top side of the disk with a velocity only in the radial direction and

with a uniform initial height. The collar also makes sure that the height

of the liquid at the collar does not change with respect to the azimuthal

direction. The gap height between the bottom face of the collar and the

top of the disk (0.267 mm) is set by a stainless steel shim which

separates them. tfter the fluid flows over the disk, it is collected by

the water tank [20] to be recirculated. The flow rate of the liquid can be

varied bY the large and small metering valves [26 and 27], which act as the

gross and fine adjustments. The volumetric flow rate was determined with

the turbine flow sensor [28] and the digital flow meter [29]. The

rotational speed was varied by the frequency inverter speed controller [5]

attached to the electric motor [4] and is read with the rotary encoder [7]

and the speedometer [8].

In order to decrease the vibrations in the system, it is mounted onto
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a machine table. The total mass of the frame and the machine table is

I

approximately 450 kg, which helps to damp out oscillations. The table is

also fitted with four vibration mounts which are made of neoprene and are

approximately 25 _ thick x 75 _ in diameter. The system is located in

the corner of the building, which aids in decreasing the vibrations seen in

the laboratory by being very close to the foundation.

To measure the height of the liquid film, a non-obtrusive measurement

technique was devised as shown in Fig. 2.1. i non-contact capacitance

sensor [9] is used to locate the surface of the disk and the surface of the

liquid. The capacitance sensor directly relates the strength pf the

electric field to the air gap between the sensor and the target. This

relation is linear within the stated range of the probe. The sensor is

attached to a digital positioner [11] by which the sensor can be raised or

lowered. The probe and digital positioner are both mounted onto a linear

slide [13] which moves the sensor along the radius of the disk. The radial

location of the capacitance probe is measured by a linear potentiometer

attached to the linear slide. The procedure to measure the liquid film

height is described below. The procedure is shown graphically in Fig. 2.2.

, The capacitance probe was calibrated to the digital micrometer by

bringing the probe down until it touched the disk very lightly, which

could be seen with a light directed behind the probe. This is the

datum 1 line shown in Fig. 2.2. The capacitance sensor was then

zeroed at this point with the offset adjustment. The capacitance

probe was raised slightly above the disk, where the digital micrometer

was zeroed. The probe was then raised until it read the maximum value
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Figure 2.2. Liquid film height measurement
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of its range. The value read on the capacitance sensor readout [10]

was compared to what was shown on the digital micrometer readout [12].

Any discrepancy could be eliminated by a gain adjustment which is

supplied on the capacitance sensor readout. This set the slope of the

linear curve which relates the electric strength to the height of the

air gap. It was found that the digital micrometer does have a small

amount of backlash (< 0.008 m), but this could eliminated by raising

the probe to the desired location instead of lowering it.

. Vith the disk dry, the capacitance probe was then moved to the datum 2

line with the digital micrometer, which was set to zero at this

location. The height at the inner radius was set to an arbitrary

value h, which is within the range of the probe.

o The probe was moved along the radius to measure the deviation of the

disk from the datum 1, which is called the tare data (h + Ah).

° The probe was then raised to datum 3. The liquid flow was started and

allowed to reach the steady state. The distance between datum 2 and

datum 3 (h') was shown on the digital micrometer. The distance from

datum 3 to the liquid film surface (h") was measured by the

capacitance probe. The liquid film height 6 along the radius of the

disk can be found with the following equation:

: h' + (h + bh) - h"

The capacitance sensor readout [10] is equipped with a 10 VDC output
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which is proportional to the air gap between the probe and the target.

This voltage signal was sampled by a Fluke 22801 Datalogger at a rate of

one every two seconds to average the readings and to determine the standard

deviation of each reading. This procedure was necessary due to the waves

present on the surface of the liquid film. Thus, the liquid film height

reported here is actually the mean film height, llso, the capacitance

probe has a sensing spot which has a diameter of 11.28 ==, so a given

reading was assigned to the radial location underneath the center of the

sensing spot. Vhen the disk was rotating, the same procedure was followed

except that the tare data (h + _h) and the air gap measurements between the

probe and the free surface (h") were averaged in the azimuthal direction as

well.

The heat transfer from the heated disk to the liquid will be studied

in future experiments by using a 6 KV etched foil heater [15] between the

underside of the disk [1] and the ceramic disk insulator [16]. The heater

is held between the plate and the insulation by screws that are through the

insulation and are threaded into the plate. The heater is supplied with a

piece of backing paper that will be placed between the heater and the

insulation to assure that the heater is evenly compressed against the

plate. An etched foil

improved uniformity of the

heater.

heater was

heat flux

chosen for this purpose due to the

compared to a conventional wire

Since the disk is able to rotate, a sealed slip-ring capsule [19] is

employed to pass the power from the stationary source [23 and 24] to the

disk, and to pass thermocouple readings from the disk to the digital
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thermometer [18]. To avoid problems with creating, extra junctions on the

thermocouples mounted on the rotating disk, the slip-ring capsule was

manufactured with six constantan wire circuits for thermocouples. In this

way, an extraneous junction will not be created because a constantan wire

and a copper wire coming from two separate slip rings will be used to

create the thermocouple bead. The copper and constantan wires from the

stationary part of the slip rings will be directly attached to the digital

thermometer. The only extraneous junction is on the brushes and the gold

slip rings. Since the brushes and the gold slip rings are very small, these

junctions are nearly isothermal, so the contribution due to these junctions

should be negligible. Thermocouples [17] mounted in holes in the disk

along one radius will monitor the temperature of the disk while other

thermocouples will measure the temperature of the liquid before and after

it flows over the disk. The thermocouples in the holes in the plate will

be a distance of 1.58 nun from the surface of the disk in order to measure

the interface temperature as closely as possible. The thermocouples will

be cemented into the holes with a thermally conductive epoxy which will not

be degraded by the operating fluid. The mean temperature of the fluid at

different radial locations will be measured by a sheathed thermocouple

which will be moved with the digital micrometer [11] and the linear slide

i13]. Since the liquid is in a closed system, a heat exchanger [22] will

be used to keep the temperature of the inlet water at a constant value.

2.4 ERROR ANALYSIS

The errors in the liquid film measurements are described and quantified,

which involve two instruments: the digital micrometer, and the capacitance
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sensor. I brief summaryof the method to determine the error will now be

given, t more detailed description is presented in Ippendix C and a full

discussion on error analysis is given by liller (1989).

The liquid film height is given by the following equation shown in

Fig. 2.2:

6 = h' + (h + Ah) h" (2.4.1)

Following the standard error analys_s procedures, the root-sum-square error

of the system is given by

Ers s : j(Ah') 2 + IA(h + Ah)]2 + (Ah") 2 (2.4.2)

The first term in equation (2.4.2) is the stated accuracy of the

digital micrometer, which was calibrated at the factory with an NBS

traceable lark-Tech Laser Gage lodel 7980. The maximum deviation over the

range of movement reported on the calibration certificate is O.OO1 mm,

which was taken as the error of the instrument.

The second term involves the accuracy of the capacitance sensor, which

is given by the manufacturer to be _0.1 percent of the range

calibrated to a known standard, which was the digital micrometer.

capacitance probe was calibrated at the beginning of each test against

digital micrometer as described in Sec. 2.3.

linearity of the capacitance probe was 0.008 mm.

when

The

the

The maximum deviation from

This value was added to
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the stated accuracy of the probe.

0

The second term in equation (2.4.2) takes on different values when the

disk is stationary or rotating. Vhen stationary, the second term is the

accuracy of the capacitance sensor given by the manufacturer plus the

maximum deviation from linearity, which is 0.01 a.

_aen the disk is rotating, the error due to the disk not being

perfectly flat and the wobble caused by the bearings must be taken into

account. This error is given by the sum of the standard deviation of the

air gap measurement between the probe and the dry disk taken at the outer

edge of the disk (where it is maximum) and the error of the capacitance

0

sensor, lultiple populations with an increasing number of samples were

taken and the means were compared with a two-tailed z-test to give a sample

number which ensures a mean at the 95 percent confidence level. The

standard deviation of the dry rotating disk with 50 samples is ¢ = 0.02 a,

so the error in the second term in equation (2.4.2) is 0.03 _.

The last term in equation (2.4.2) is again the error associated with

the capacitance sensor. Due to the fact that the mean film thickness is

being reported, further comments concerning the third term in equation

(2.4.2) are necessary. At all flow rates and rotational speeds, waves

were present on the free surface of the liquid film. I test was performed

to compare the means of different numbers of samples in the subcritical and

supercritical regions to determine a suitable number of data points for a

mean which falls in the 95 percent confidence level. For subcritical flow,

a normal z-test was performed, and it was found that for 125 and 250

53



samples, the meanswere equal at the 95 percent confidence level, so 250

samples were 'taken for each data point reported. Likewise, for

supereritieal flow 80 samples were taken in order to achieve the same

confidence level, k similar test performed when the disk was rotating

showed that the number of samples needed for the 95 percent confidence

level was the same as that for the stationary supercritical region. The

root-sum-square error in the liquid film height measurement is as follows:

Stationary disk - Ers s = iO.O1 nun

Rotating disk - Ers s = *0.03 mm

The gap between the collar and the disk was measured with feeler gages

and the error in this data point was found to be i0.01 mm.

2.5 RESULTS AND DISCUSSION

2.5.1 Liquid Film Thickness _easurements

The mean thickness of a liquid film of de-ionized water as it flows

across a horizontal disk has been measured experimentally. The flow rate

ranged from 7.0 - 15.0 LPI and the rotational rate varied from 0 300

RPJ, : Figures 2.3 - 2.8 present the film thickness when the rotational

speed is held constant and the flow rate is varied. Figures 2.9 - 2.11

show the film thickness when the flow rate is held constant and the

rotational speed is changed. In all of the measurements presented in this

report, a duplicate measurement was made and the two runs were within 5

percent of each other, which is within the experimental error of the film

thickness measurement system.
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Figure 2.3 shows the film thickness when the gisk is stationary in

both the supercritical and subcritical regions. As the flow rate

increases, the hydraulic jump is moved toward the outer edge of the disk.

The hydraulic jump is the sudden increase in the film thickness and is

actually a momentum balance between the supercritical flow and the

subcritical flow. The exact shape of the jump could not be determined with

the present measuring instrument because if an attempt was made to measure

the film thickness in the supercritical region very near the jump, the free

surface of the subcritical region would touch the side of the capacitance

sensor and saturate the signal. Therefore, the straight line without data

points between the supercritical and subcritical regions is where the

hydraulic jump resided.

The first data point at 50.8 mm is the gap height between the collar

and the rotating disk (0.267 mm). The next data point at 76.2 _ is the

first point which could be read by the capacitance probe. Therefore, the

line connecting these two points is simply a linear interpolation and no

conclusions can be drawn concerning this region. Even though the outer

radius of the disk is 203.2 _, measurements are not reported past 195.6

because the sensing spot of the capacitance sensor was over the edge of the

disk.

In Fig. 2.3, it can be seen that the film is nearly horizontal in part

of the subcritical region when the flow rate is 7.0 LP! and then drops off

near the edge of the disk. This decrease in the film thickness at the edge

is due to the acceleration of the flow as the liquid exits the disk. The

radius of curvature at the edge was nearly constant up to approximately
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13.0 LP! and produces significant surface tension effects. This can be

noticed in Fig. 2.3 by the curves showing 7.0 - 13.0 LPI, which approach

the same film thickness near the edge of the disk. For 15.0 LPI, the

hydraulic jump was nearly pushed off the edge of the disk, so it did not

reach the same height as the curves with lower flow rates. Figure 2.3 also

shows that the liquid film thickness in the subcritical region is an order

greater than that in the supercritical region.

In Fig. 2.4, the film thickness in the supercritical region when the

disk was stationary can be seen to increase along the radius of the disk.

In the supercritical region, the major forces on the liquid film are those

due to inertia and friction. Since the frictional forces tend to slow the

liquid, the film thickness increases due to continuity.

Figure 2.4 also shows that the film thickness in the supercritical

region may increase monotonically or may first decrease and then increase

downstream. This decrease in the film thickness is due to the radial

spreading of the fluid as it travels across the disk. This effect is then

overtaken by that due to friction, at which point the film thickness

increases. For flow rates of 11.0 LP| or less, the effect of friction is

dominant over the effect of the spreading of the liquid, so the liquid

increases monotonically. As the flow rate (or Reynolds number) increases,

the film thickness decreases because the effect of the radial spreading of

the film becomes greater than the effect of friction.

The film thickness for different flow rates when the rotational speed

is 55 RPM is shown in Fig. 2.5. Up to approximately 120 mm the flow has
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the same trend as the supercritical flow of the stationary disk: as the
w

i

flow rate increases, the film thickness decreases due to the effect of the

radial spreading of the flow overtaking the effect of friction. Fast this

region, however, the profile takes on a very different appearance. For 7.0

LPI, the film thickness begins to flatten out and then decrease past 120

mm. Vhen the disk is rotating, the dominant forces on the film are as

follows: frictional, inertial, and centrifugal. Near the center of the

disk, the frictional and inertial forces are prevalent. Closer to the edge

of the disk the centrifugal force comes into play. Therefore, near the

edge of the disk one would expect that the film would accelerate because of

the centrifugal force and become thinner due to continuity. It can also be

seen in Fig. 2.5 that as the flow rate increases, the point where the

curves begin to flatten due to centrifugal force travels downstream. This

is because the effect of inertia on the flow is dominant over the effect of

the centrifugal force for a longer distance. Near the edge of the disk,

the film thickness increases dramatically due to the effect of surface

tension at the edge. This is actually a fractional hydraulic jump which

does not reach its full height before the edge of the disk. As the flow

rate increases, the height of this jump decreases because the force due to

• the inertia of the liquid overcomes the force due to surface tension.

Figure 2.6 presents the film thickness measurements for different flow

rates when the rotational speed is 100 _PI. In this graph, it can be seen

that the hydraulic jump near the edge of the disk is not present because

the centrifugal force is greater than the force due to surface tension.

Also, the curves have the same trend as in Fig. 2.5 where the film

thickness first increases because of friction and then decreases due to the
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centrifugal force. A further examination of _his figure shows that the
$

curve of 15.0 LP_ lies above those of 11.0 LFI and 13.0 LP! in the region

where the film thickness is increasing. A possible reason for this is that

the difference between these curves is on the order of the experimental

error in the measurement system.

Figures 2.7 and 2.8 present the film thickness when the flow rate is

varied from 7.0 to 15.0 LP! for rotational speeds of 200 and 300 RPJ,

respectively. Again, the same trend is evident where the film thickness

first increases due to frictional effects and then decreases due to the

effect of centrifugal force. In comparing these two figures, it can be

seen that the radial location where the effect of centrifugal force begins

to dominate the flow moves toward the center of the disk as the rotational

speed increases. This is shown further in Figs. 2.9 - 2.11 where the flow

rate is held constant (7.0, 11.0, and

rotational speed is varied from 55

rotational speed increases the maximum

15.0 LPE, respectively) and the

to 300 RPM. In Fig. 2.9, as the

thickness occurs closer to the

center of the disk. This can also be seen in Figs. 2.10 and 2.11. Also

shown in Figs. 2.9 - 2.11 are the supercritical regions for the different

flow rates when the disk is stationary. It can be seen that the film

thickness in the supercritical region is generally close to the case when

the rotational speed is 55 RP|. The exception is near the end of the

supercritical region where the film thickness increases, as shown in Figs.

2.10 and 2.11. This phenomenon is due to the fact that the stationary film

is not being acted upon by centrifugal forces, so the film thickness

continues to increase in this region because of the effect of friction.
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2.5.2 F10W Visualization
$

t photographic study was performed to determine the basic phenomena

which occur when the disk was stationary and rotating. Vhen the disk is

stationary, waves can be seen both on the subcritical and supercritical

regions. The waves on the subcritical region have larger amplitudes than

those in the supercritical region. It low flow rates, a toroidal "roller"

was found at the hydraulic jump when the disk is stationary. At higher

flow rates, the roller flattened out until it could not be distinguished

from the increase in the film thickness at the hydraulic jump. tlso for

high flow rates, the surface tension of the liquid at the free surface

creates a standing wave at the edge of the stationary disk. This standing

wave is also present at all flow rates when the disk is rotated at low

angular speeds. At higher spin rates, waves appear on the disk which flow

nearly radially across the disk on top of a thin substrate of fluid.

In Figs. (2.12 and 2.13), the disk was stationary, the flow rate was

set to 7.0 LPI and the shutter speed was 1/1000 second. Vith this shutter

speed, the waves on the free surface of the liquid film could be

photographed.. In all of the photographs presented, the direction of the

flow is from right to left and the direction of rotation is clockwise. The

waves in the supercritical region are shown in Fig. 2.12. Near the collar

the amplitude of the waves is small, but close to the hydraulic jump the

amplitude of the waves becomes larger. The waves in the subcritical region

can be seen in Fig. 2.13. These waves have a much larger amplitude than

those in the supercritical region. This was verified when the liquid film

height was measured with the capacitance sensor. Even though the actual
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Figure 2.12. Stationary disk, 7.0 LPM, supercritical region

Figure 2.13. Stationary disk, 7.0 LPM, subcritical region highlighted
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height of the waves could not be measured, _he staRdard deviations of the
s

signals from the mean film thickness were much larger in the subcritical

region than those in the supercritical region.

Figures (2.14, 2.15 and 2.17) show the behavior of the hydraulic jump

for low flow rates. These photographs were taken with a shutter speed of

1/60 second. Figure2.14 show8 the hydraulic jump at a flow rate of 3.0

LPl. The hydraulic jump occurs immediately after the liquid exits the gap

between the collar and the disk. The flow rate was increased to 4.0 LPI,

which is shown in Fig. 2.15. The hydraulic jump is pushed away from the

collar approximately 30 n. The shape of the jump can be seen to be a

toroidal "roller". The motion of the roller is very chaotic in that its

width and height oscillate in a seemingly random fashion, it this flow

rate, however, the cross section of the roller is nearly circular, tt

higher flow rates, it was found that the shape of the roller changes

significantly. I more detailed visual study was performed, and it was

found that at flow rates between 3.0 - 6.0 LPI, the roller had a nearly

circular cross section as shown in Fig. 2.16a. For flow rates between 7.0

8.0 LPM, the cross section of the roller was oval in shape as shown in

Fig, 2.16b .... For flow rates . at and above 9,0 LP|, the shape of the roller

was no longer distinguishable from the gradual increase in the film height,

which is presented in Fig. 2.16c. The surface of the film at the hydraulic

jump at this flow rate could clearly be seen to be falling down toward the

center of the disk in the direction opposite to the main direction of the

flow. Therefore, the roller had submerged such that it could not be seen

photographically, but its presence was unmistakable. This change in the

shape of the roller is thought to be due to the change in the balance
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Figure 2.14. Stationary disk, 3.0 LPM

Figure 2.15. Stationary disk, 4.0 LPM

71



Roller

/
• . ,, J

/7///7////////////////
_-- Standing concentric W& ves

in supereritieal region

Figure 2.16a. Roller for 3.0-6.0 LPM

/////////////////////

Figure 2.16b. Roller for 7.0-8.0 LPM

• :." " .v'- .-" _ ..: i.'.'', "_ : "'._-L ,,.: -.i: - ," ," "'.'.._ .... "- • _ . • ., :. . - _ ,. ,

--Omm.-

/////,,'//////,2////////

Figure 2.16c. Roller for 9.0-15.0 LPM
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between the surface tension and the momentum of the fluid. At lower flow

rates, the velocity of the fluid within the roller and the surface velocity

of the liquid film do not have sufficient momentum to overcome the surface

tension which holds the circular shape of the roller. As the flow rate and

the surface velocity of the supercritical liquid film increases, the effect

of momentum of the liquid overcomes that of surface tension, which results

in the change in the shape of the roller.

Figure 2.17 shows the film surface when the flow rate is 5.0 LPM. A

series of small concentric waves immediately upstream of the hydraulic jump

can be seen, which are illustrated in Fig. 2.16. These concentric waves

were present at flow rates between 4.0 - 15.0 LPW and had larger amplitudes

at higher flow rates.

Figures (2.18 - 2.24) present the rotating disk for a flow rate of 7.0

LPi and rotational speeds of 55, 100, 150, 200, 250, 300, and 350 _Pl,

respectively. Figure 2.18 shows the disk rotating with a speed of 55 IPI.

The waves on the free surface appear to be similar to the waves found in

the subcritical region on the stationary disk with the same flow rate (see

Fig.: 2.13). leasurements of the standard deviation from the mean film

thickness, however, showed that the amplitude of the waves were closer in

height to those in the supercritical region. Near the edge of the disk is a

standing wave created by the surface tension of the fluid. In this case,

the rotational speed is slow enough that the fluid follows the edge of the

disk downward instead of flying off the disk horizontally. Therefore, the

radius of curvature of the free surface around the edge of the disk acts to

increase the film height immediately upstream from the edge of the disk.
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Figure 2.17. Stationary disk, 5.0 LPM

Figure 2.18. Rotatin$ disk, 7.0 LPM, 55 RPM
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Figure 2.19. Rotating disk, 7.0 LPM, 100 RPM

Figure 2.20. Rotating disk, 7.0 LPM, 150 RPM
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Figure 2.21. Rotating disk, 7.0 LPM, 200 RPM

Figure 2.22. Rotatin 8 disk, 7.0 LPM, 250 RPM
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Figure 2.23. Rotating disk, 7.0 LPM, 300 P,.PM

Figure 2.24. Rotating disk, 7.0 LPM, 350 RPM
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Two flow regimes were found to exi§t on .the rotating disk:

wavy-laminar and radial wave flow. The transition from the wavy-laminar

flow to the radial-wave flow has been visually examined for 7.0 and 13.0

LP! and is presented in Figs. (2.18 - 2.31). The wavy-laminar flow is seen

at lower rotatinal speeds and the radial-wave flow occurs at high

rotational speeds. The wavy-laminar flow is shown in Fig. 2.18 for 7.0 LPM

and 55 RPi. In this regime, no recurring wave patterns are distinguishable

except the end effects at the outer edge of the disk. The radial-wave

regime is shown in Fig. 2.30 for 13.0 LPI and 300 RPi. Several

well-defined radial waves can be seen which appear to flow across the disk

on top of a thin substrate and carry the bulk of the fluid off of the disk.

In Fig. 2.30, a radial wave is exiting the disk on the left-hand side in

the center. Immediately below this wave, very little fluid is leaving the

disk where the thin substrate is present. The transition between these two

regimes will now be discussed.

Vhen the rotational rate was slowly changed from 55 RP! to 100 RP! for

7.0 LPI, the waves on the free surface began to form a pattern which could

be easily distinguished, as shown in Fig. 2.19. Parts of the free surface

broke, free from the wavy-laminar regime to form V-shaped waves that ran at

a diagonal angle between the radial and circumferential directions opposite

to the rotation of the disk. At the lower rotational speeds, these waves

were present only at the outer edge of the disk. The film thickness at the

base of the 'V' was greatest, and that at the top of the V was least. It

is felt that the effect of the centrifugal force eventually overcame that

of the surface tension, so that the liquid film began to run in rivulets

toward the edge of the disk. Is the rotational speed increased, the width
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of the V-shaped waves decreased and the length increased until the waves
|

traversed the radius of th disk as shown in Fig. 2.21. It can be seen in

Fig. 2.22 that the spacing between the radial waves increases with the

radius because of the increase in the flow area. For rotational speeds at

and above 200 RP_, the radial waves could be seen in almost every still

photograph, so the transition region for 7.0 LPi is 100-200 RPM.

Figures (2.25 2.31) present the surface

rotational speeds of 55, 100, 150, 200, 250, 300, and 350 RPM.

examining these figures, the transition region was determined

approximately 150 - 200 RP_, which is higher than that of 7.0 LPM.

waves for 13.0 LPM at

Upon

to be

It is

thought that at the higher flow rate, the transition is delayed because the

effect of centrifugal force must overcome the increased effect of the

radial momentum of the fluid.

Figures (2.18 and 2.25) compare two flow rates (i.e., 7.0 and 13.0

LPI, respectively) at the same rotational speed (i.e., 55 RPi). In Fig.

2.18, the width of the standing wave at the edge is much larger than that

of Fig. 2.25, which has a higher flow rate. This shows that at higher flow

rates, the momentum of the flow overcomes the effect of surface tension.

2.6 CONCLUSIONS

The characteristics of a thin liquid film with a free surface on a

stationary and rotating disk have been examined experimentally. The film

thickness was measured for different flow rates and rotational speeds with

a non-contact capacitance technique. Also, the nature of the waves on the
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Figure 2.25. Rotating disk, 13.0 LPM, 55 RPM

Figure 2.26. Rotating disk, 13.0 LPM, 100 RPM
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Figure 2.27. Rotating disk, 13.0 LPM, 150 RPM

Figure 2.28. Rotating disk, 13.0 LPM, 200 RPM

81



ORIGINAL PAGE IS

OF POOR QUALITY

Figure 2.29. Rotating disk, 13.0 LPM, 250 RPM

Figure 2.30. Rotating disk, 13.0 LPM, 300 RPM
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Figure 2.31. Rotating disk, 13.0 LPM, 350 RPM
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free surface was determined photographically. Vhen the horizontal disk was
i

stationary, the thin film experienced a hydraulic jump, in which the

velocity decreases and the thickness increases at a certain radial

distance. In the region upstream of the jump, the film thickness was

governed by the inertial and frictional forces on the fluid, as well as the

radial spreading of the fluid. Downstream from the jump, the film

thickness was mainly determined by the radius of curvature of the liquid at

the outer edge of the disk. The liquid film thickness on the rotating disk

was affected by the inertial and frictional forces on the fluid near the

center of the disk, and by the centrifugal force near the outer edge of the

disk. The flow visualization study revealed the presence of a "roller" at

the hydraulic jump on the stationary disk, whose shape changed with the

flow rate. Also, the transition between wavy-laminar flow to radial-wave

flow was observed on the rotating disk as the rotational speed was

increased. The range of transition shifted to higher rotational speeds as

the flow rate increased.
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Section III

TWO-DILENSIONAL CONPUTATION OF THE FREE SURFACE FLOV

OF A THIN LIQUID FILN USING "PRESSURE OPTINIZATION I[ETHOD"

3.1 SUltRY

The results of numerical computations are presented for the free

surface flow of a thin liquid film in the presence or absence of a

gravitational body force. Three different flow systems were studied: (a)

a falling film down a vertical wall, (b) plane and radial film flows under

zero gravity and (c) plane and radial film flows along a horizontal plate

in the presence of gravity. In the case of film flow along a horizontal

plate where gravity acts across the thickness of the

number, which characterizes the flow regime (i.e.,

subcritical), is found to be the most dominant

transformation of the flow from supercritical to subcritical is associated

with a hydraulic jump. The distributions of the film height, film velocity

and friction coefficient are presented.

film, the Froude

supercritical or

parameter. The
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3.2 INTRODUCTION

t

The flow of a thin liquid film

devices. A thin film is quite

"condensation on a solid surface in a

is encountered in many engineering

commonly found during evaporation or

compact heat exchanger or cooling

tower, spin coating in metal industries, and impingement cooling of a solid

wall with a liquid jet. Besides practical applications, the fluid

mechanics of thin film flows is important from a theoretical point of view

since both viscosity and free-surface effects are significant in these

flows. Moreover, the understanding of such flows under reduced or zero

gravity is essential for the pioper design of heat exchangers and heat

pumps for space applications, which was the primary motivation for the

present study.

The falling of a thin liquid film along a plane vertical wall has been

studied by many investigators since the turn of this century. For steady

fully-developed laminar flow, a theoretical solution can be derived from a

simple balance between the gravitational body force and the shear force at

the solid wall (Bird et al. (1960)). The film height remains constant and

the velocity profile across the film becomes parabolic in the fully

developed region. The results of developing flow when a film is introduced

at its equilibrium height is presented in the review aritcle by Faghri and

Payvar (1979). This review also included the experimental studies on

laminar flow with constant thickness. A film failing under the influence

of gravity ceases to be laminar and constant in thickness when the flow

rate is high. Vaves tend to appear on the surface and the flow becomes

turbulent as the flow rate is increased. A number of theoretical as well

as experimental studies have been performed to understand the wavy-laminar
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and turbulent flows (see, for example, Seban and Faghri (1976, 1978) and

llirshburg and Florschuetz (1982)).

A somewhat less studied problem is the spread of a liquid film over a

plate. Watson (1964) presented results of analytical and experimental

studies of the radial spread of a liquid jet impinging on a horizontal

plane for laainar and turbulent flows. By using the boundary layer

approximations for the governing equations, analytical solutions using a

similarity transformation along with the Pohlhausen integral method were

derived. The analysis covered the regions where the boundary layer

thickness is less than the film height and where the film is totally

engulfed by the boundary layer. The effects of the gravitational pressure

gradient was discussed. The possibility of a hydraulic jump in such a flow

was also anticipated. However, the analysis was applicable only to the

supercritical flow before the jump. An equation was also presented to

predict the jump height for any given location of the jump. The agreement

between the experimental data and the analysis was satisfactory.

Another interesting problem of thin film research is the spreading of

the film under the action of centrifugal force as seen in a rotating

system. An approximate analytical solution for laminar flow on a rotating

disk was developed by Rauscher et al. (1973). An asymptotic expansion

technique was used where the radial spread of the fluid was perturbed to

determine the effects of convection,

diffusion, surface curvature and surface

effects were discussed on a physical basis.

Coriolis acceleration, radial

tension. These higher order
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In all of the previous studies concerning.thin liquid films, the

investigators have tried to develop analytical models or have taken

experimental data. Some of these models are quite approximate in nature

and do not bring out the finer details of the flow field, loreover, in all

of the previous numerical studies (Faghri and Payvar (1979)) concerning the

laminar falling film, a constant thickness was used in the calculation

domain and no degree of freedom was permitted for the variation of free

surface along the flow. A general numerical finite-difference solution of

a thin film flow accounting for the variation of free surface height is not

available at the present time. These flows are difficult to solve by the

finite-difference method since the geometry of the free surface is not

known ahead of time, and the surface profile cannot be fitted in a regular

Cartesian or cylindrical coordinate system. Moreover, none of the studies

mentioned above has considered the flow under reduced or zero gravity,

which is expected to be different from the flow under normal gravity, l

proper understanding of such flows is essential in the design of space

cooling systems.

The present study is undertaken to develop a general numerical

solution procedure for free surface thin film flows which can be applicable

to both plane and radial systems, and to both normal and zero gravity

environments. The results highlight the effects of gravity for different

configurations of the flow.

3.3 PIOBLEI FOIIULATIO_

The equations governing the conservation of mass and momentum in a

thin film of fluid which is Newtonian with constant properties are given by
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l)V V2 ; p; (3.2)
p D-_=- Vp + # +

These governing equations have to be supplemented with appropriate

boundary conditions. At the solid wall, the no-slip condition exists,

therefore, V = O. On the free surface, the shear stress vanishes which

implies or/On = O, where n is the coordinate normal to the free surface.

Moreover, in the absence of any significant surface tension, the static

pressure on the free surface must equal the ambient pressure. By setting p

equal to the difference between the actual and ambient pressures, then p =

0 on the free surface since pressure is a scalar quantity. Boundary

conditions must also be assigned in

locations: the inlet and exit to the

domain. The appropriate conditions

the direction of the flow at two

control volume or computational

were determined by analyzing the

characteristic behavior of the flow, which is presented in a later section.

These depend on whether the flow is supercritical, subcritical, or mixed.

For a supercritical flow, which includes most of the cases considered here,

h = hin and V = Win at the inlet and or/On = 0 at the exit, where n is the

coordinate normal to the exit plane. For subcritical flow, h = hout at the

exit was prescribed instead of the inlet height. |oreover, the pressure

was prescribed at the exit boundary. The boundary-fitted coordinate system

used here is shown in Fig. 3.1 and the boundary conditions in component

form are listed in Table 3.1 for plane and radial flows. The coordinate

system is dicussed in detail in a later section of the paper.

89



Flow in

X

Free surface

////////////

Flow out

Thecoordinatesystemon a _ridcell

9O



Table 3.1:

aty= O:

aty= 6:

at z = 0 or r. :
In

at z = L or rout:

Boundary Conditions for Plane Flow and Radial Flow

V=W= 0
-4 -4

r • n = O, Z • t = 0

v = O, _ w = Vin, for uniform entrance

1 w 1.s Vin [ _(_) - (_)2 ], for parabolic
entrance

p = O, for cases 1 and 2

p = pg (_- y), for case 3
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The flow configurations considered im the present investigation are

shown in Fig. 3.2. They can be broadly classified into three groups

according to the presence and orientation of the gravitational body force:

(1) Falling film along a vertical wall

(2) Film flow under zero gravity

(3) Film flow along a horizontal plate in the presence of gravity.

The three possible orientations with respect to gravity will be denoted by

1, 2, and 3. Moreover, P and R will denote plane and radial flows and A, B

and C will denote different combination of flow parameters. The parameters

used for this study are listed in Table 3.2.

The first case is a classical problem where the major driving

mechanism is the gravitational body force. This problem was used to check

the accuracy of the present numerical methodology.

introducing the film at a height other than the equilibrium

given flow rate will also be investigated for this case.

The effects of

height for a

Por film flow under zero gravity, two problems will be considered:

(2P) Plane film flow under zero gravity

(2R) Radial film flow under zero gravity

In the absence of any gravitational body force, the orientation of the

plate becomes immaterial. The flow remains the same whether the plate is

vertical, horizontal, or inclined. In this case the flow is driven by

inertia and viscous forces. In the radially spreading flow, the area

available for the film increases downstream and acts as an added mechanism

for the reduction of the film velocity.
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Table 3.2:

Case 1PA:

Flow Conditions and Free Surface Specifications

J

6in = 6fd , (= 0.000595 m)

Re = 12,5, g/gs = 1, L = 0.03 m

Free surface: A = 1

Case IPB: 6in = 1.26fd , 6fd = 0.000595 m)

Re = 12.5, g/gs = 1, L = O.03m

Free surface: { A = (: + l')an' f°r _ < '1
A 1 for _ > _1

Case IPC: 6in = 0.86fd , (6fd = 0.000595 m)

Re = 12.5, g/gs = 1, L = 0.03 m

Free surface: _ A = ( 1 + t_) an. for _ < _1

t
1, for _ > _1

Case 2P: 6. = 0.000595 m
in

Re = 12.5, g/gs = O, L = O.03m

Free surface: A = (1 + i_) an

Case 2RI:

H

Case 2RB

6in = 0:005 m, rin = 0.0508 m, rou t = 0.1953 m

• = 404, g/g = 0Rein s

Free surface: A = (1 + A_) an

6in = 0.000508 m, rin = 0.0508 m, rou t = 0.I m

• = 8.5, g/gs = 0Reln

Free surface: A = (1+ A_) an

Continued on next page
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Case 3P: Re = 88.75, g/gs : I, L = 0.1445 m

Fr'in = .582, for case 3PIt

Frou t = 1.0

Free surface:

= (1 + 1_) an, supercritical

A = C [2- (D + B_) bn ], subcritical (_ # I)

Case 3R: Rein : 50.5, g/gs = I, tin : 0.0508 m, rou t : 0.1953 m

7.442, for case 3RIFrin = 10.96, for case 3RB

Frou t = 1.0

Free surface:

A = (i + A_) an, supercritical

= C [2 - (9 + B_)bn], subcritical (_ $ 1)
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In the third group, we will again consider twa problems according to

the flow geometry under consideration:

(3P) Plane film flow along a horizontal plate in the presence of gravity

(3R) Radial film flow along a horizontal plate in the presence of gravity

In the case of horizontal thin film flow where the gravitational body

force acts across the thickness of the film, different flow regimes

(i.e., supercritical, subcritical, or both) may be present according to the

local film velocity and height. The transition of the flow from

supercritical to subcritical can take place through a hydraulic jump.

Since a sudden transition of the flow takes place across a jump, special

analytical and computational tools are required to calculate the flow

around this singular point.

3.4 NU_EUCAL SOLUTION PIOCEDUIE

The complete governing transport equations (3.1 and 3.2) along with

the appropriate boundary conditions (Table 3.1) were solved numerically

using a finite-difference scheme. Since the free surface geometry cannot

be handled very well with a regular rectangular or cylindrical coordinate

system, aboundary-fitted curvilinear coordinate system had to be used. In

this system, the free surface of the film was used as one of the boundaries

of the control volume.

A curvilinear system can be either orthogonal or non-orthogonal

depending on whether the faces of the control cells are orthogonal to each

other or not. The orthogonal system has the advantage of simplicity

compared to the non-orthogonal system. In either system, the vectorial
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form of the governing equations [i.e., eqns. (3.1). and (3.2)] can be

written in terms of components and can be discretized to determine the

finite-difference equations. In most of the computations presented, the

coordinate system was non-orthogonal.

Within the range of the general non-orthogonal coordinate system there

exist several options in formulating the equations. These options arise

from the freedom available in the choice of velocity components and their

direction with reference to the coordinates. Thus, velocity and force

vectors can be resolved either into their Cartesian, covariant or

contravariant components, ioreover, the problem can be solved in a

physical domain or transformed into a domain where the grid cells are

rectangular and other physical quantities are non-dimensional or reduced in

dimension, llthough all these options are obviously equivalent to each

other from the physical point of view, they are substantially different as

far as numerical treatment is concerned, each presenting its own problems.

In the present study, the problem was solved in the physical domain where

covariant velocity components were used. These are components parallel to

the cell faces.

The grid system used can be considered as a distorted version of the

usual orthogonal Cartesian grid system in which grid lines and control

cells are stretched, bent and twisted in an arbitrary manner, subject to

the cells retaining their topologically Cartesian character. This means

that grid cells always had four sides and four corners in the

two-dimensional domain considered here.
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As shown in Fig. 3.1, the local coordinates _re defined along lines

I

joining adjacent cell centers. The z-axis was taken in the streamline

direction and y-axis in the direction across the film.

the velocity vectors in the y and z directions are v and

and can be defined as

The resolutes of

w, respectively,

v=V .j

w=V .k

_ °

Here j and k are unit vectors in the direction of the coordinate axes. In

general, the resolutes are not the same as the velocity components in these

directions, but can be related to them by geometrical factors.

The finite-difference equations were derived by the application of the

principle of conservation of mass and momentum to the grid cells. The

transport processes for each cell are convection and diffusion, ioreover,

there may be a momentum or mass source within the cell. The mass flux

across a cell boundary was computed exactly from the scalar product of the

velocity vector and the vector representing the area of the cell face.

Note that this can be written out in terms of velocity resolutes and

geometrical factors including angles between cell faces. In the

calculation of convection across a cell face, special attention was given

to the Change of the orientation of the coordinate axes from cell to cell

and the curvature of a cell face. These resulted in extra terms in the

calculation of convection. However, the representation of convection was

exact and did not involve any approximation due to the non-orthogonality of
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the grids.

The calculation of diffusion is somewhat more complicated than

convection. The diffusion flux was calculated assuming the coordinate

system to be locally orthogonal. This obviously neglects cell curvature

and non-orthogonal orientation and may incorporate a substantial amount of

error where the process is primarily diffusive. However, in the thin film

calculation this approximation should not introduce severe inaccuracies,

particularly when the film enters the control volume with a reasonably high

velocity.

The relative importance of convection and diffusion at each cell was

determined from the magnitude of the local Peclet number. A hybrid

difference scheme demonstrated by Patankar (1980) was used. The

calculation of the momentum source due to the pressure gradient and that

due to the gravitational body force could be accomplished without any

approximation for non-orthogonality.

The grid generation was achieved in two steps. First, the grid cells

were formed by algebraic interpolation between the boundary points. This

provided an approximately equal volume for each control cell. The

boundaries for the interior cells were then smoothed to make the cell faces

more orthogonal to each other. This was achieved by solving the Laplace

equation for grid geometry. This latter operation resulted in a better

representation of diffusion in the flow field and more accurate

computations. The details of the formulation in a body-fitted coordinate

system and the generation of grid cells are described in the work by
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Spalding et al. (1986).

The number of grids in the z-y plane was determined from a series of

computations with different grid sizes. For radial flow, it was found that

the free surface profile along with other computed quantities do not change

any further if the computational mesh is refined beyond 50 x 25 grids in

the z-y direction. Computations with 50 x 25 and those with 55 x 27 grids

yielded identical results. For plane flow 40 x 20 grids in the z-y plane

was found to be adequate, which precisely predicted the friction

coefficient and velocity profile in a fully developed falling film flow.

Therefore, all computations were carried out using 40 x 20 grids for plane

flow and 50 x 25 grids for radial flow.

The flow field was solved by using the SIMPLEST algorithm as discussed

by Spalding (1980). One special feature of this algorithm is that in the

discretized form of the momentum equation, the convection terms are lumped

together with the source term. This results in a faster convergence for

some flow conditions. The algorithm works in an iterative manner where the

continuity equation is transformed and used as a pressure correction

equation. The computation starts by guessing a pressure field. This is

used to determine velocity components from their corresponding momentum

equations. The modified continuity equation is then used to determine the

amount of pressure correction. The guessed pressure, the amount of

pressure correction and the solution corresponding to the momentum

equations are then assembled together to give the flow rate and pressure

field for that step. The new pressure serves as a guess for the next step.

The solution proceeds until the normalized residual for each equation was
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approximately 10 .6 The above finite-difference formulation and solution

procedure is incorporated in the computer program PIIOENICS that was used in

the present study.

In the free surface flow discussed here, both the zero-shear condition

and the p = 0 condition at the free surface need to be satisfied. These

two conditions cannot be simultaneously given at a boundary with the

existing program. On the other hand, the free surface geometry, which is

unknown in the problem has to be given before solving the flow field by a

finite-difference method. To avoid this difficulty, an iteration scheme

has been adapted as described below.

(i)

(2)

(c)

Guess a free surface height distribution. One may use the

one-dimensional solution for a good start.

Solve the flow field completely for that distribution using the

zero-shear condition on the free surface boundary.

Find the pressure distribution on the free surface and calculate

its deviation from an ideal zero-pressure free surface. The

measure used here is the normalized US (root-mean-square) error

referenced to the initial total head. It is defined as

Normalized RMS Error =
PWin2

(p g hin+--_ -- )

where Pk is the free surface pressure at the kth node, and n is

the number of nodes adjacent to the free surface.
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(d) Calculate and reduce the KS error on the £ree surface by
u

successive alteration of the surface height distribution.

(e) The results with the minimum error give the required final

solution.

The optimization technique used here is known as the exhaustive search

method. In this method, a general form of the equation representing the

free surface is assumed. The equation contains a number of arbitrary

parameters depending on the desired degrees of freedom. To start the

process, the parameters are given _alues either from experience (i.e., the

one-dimensional solution) or just guessed. Only one parameter is then

changed while the other are held constant and the trend of the RMS error is

observed. That parameter is changed continuously in successive steps until

a minimum KS error is obtained. The parameter is then kept at its optimum

value while the other parameters are changed one by one following the same

procedure. Once the first round of optimization is complete, the first

parameter is changed again in either direction to see whether the error

increases or decreases. The process is continued with the other parameters

until an absolute minimum for a combination of parameters is obtained. The

accuracy of this process depends somewhat on the assumption of the form of

free surface. In the results presented here, hyperbolas with two or more

degrees of freedom (Table 3.2) were used to represent the computational

domain.

The numerical algorithm had to be modified slightly when a jump was

present in the flow field. This happened in the case of horizontal film

flow in the presence of gravity. Under some flow conditions, both
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supercritical and subcritical flows are presept, separated by a hydraulic

I

jump. Vhen a jump was present, the two regimes of flow ( i.e.,

supercritical and subcritical) had to be computed separately and the

conditions were matched at the jump interface. It involved the following

operations.

(a) Compute the supercritical film height by imposing the inlet film

height and velocity and by optimizing the free surface profile to give

the minimum EllS error in the pressure.

(b) Calculate the jump height from.the supercritical film height using the

equation

(3.3)

where subscript '1' denotes the supercritical condition before the

jump and '2' denotes the condition following the jump. This

relationship can be derived from the momentum balance at the jump

while the velocity profile before and after the jump are assumed to be

parabolic in nature.

(c) Compute the subcritical film height by imposing the flow rate and exit

film height corresponding to Fr = 1 and optimizing the free surface

profile to give the minimum R_S error for the pressure.

(d) The supercritical and subcritical flows are calculated for the same

flow rate, but for supercritical flow the inlet Froude number is

fixed, whereas for subcritical flow the exit Froude number is fixed.

(e) The intersection of the jump height and the subcritical film height
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determines the location of the jump. The film height before the jump
t

is given by the supercritical height whereas after the jump the film

height is given by the subcritical height.

In order to increase the computational accuracy for both subcritical

and supercritical flows, the flow involving a hydraulic jump was always

assumed to have a parabolic velocity profile at the inlet. _oreover, the

flow was well-established by evolving the flow with a few extra nodes at

the upstream side of the computational domain.

3.5 _SULTS AND DISCUSSION

3.5.1 Falling Film

The flow of a plane film along a vertical wall under the influence of

gravity is a classical fluid mechanics problem where an analytical solution

is available for fully-developed laminar flow. In the fully-developed

region, the film height remains constant and the velocity profile has a

parabolic appearance. Numerical computations using the present methodology

were performed for a film which has already reached the fully-developed

condition, t parabolic velocity profile with the same shape as given by

the analytical solution was used for the incoming fluid. The Reynolds

number for the film was Re = 12.5. It was found that for the entire

domain, the velocity profile across the film remains about the same and the

friction coefficient was equal to that of the analytical solution. In the

present investigation, the friction coefficient is defined in terms of

local average

inlet velocity.

flows. For

velocity of the f]_lid across the film in contrast to the

This definition is applicable for both plane and radial

plane flow with constant thickness, W is constant because of
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continuity.

The distribution of pressure on the free surface was also computed and

the normalized RllS error was determined to be 0.011. This non-zero value

for the error may be attributed

representation of the flow field by

error can be further reduced by

freedom in the free surface equation.

to the inaccuracy associated with the

finite-difference equations. This

more grid points and more degrees of

The developing flow of a falling film when introduced at a height

equal to, above, or below the equilibrium height was also investigated.

The flow conditions are summarized in Table 3.2 (cases 1P) and the results

are shown in Table 3.3 and Figs. 3.3 and 3.4. Vhen the film enters the

control volume at the equilibrium height, the height remains the same and

the development of the velocity profile from uniform to parabolic occurs as

the flow moves downstream. Vhen the film enters with a height other than

the equilibrium height, a gradual adjustment of the height takes place

until the flow reaches the equilibrium height. The adjustment of the free

surface and the development of the velocity profile occur simultaneously in

this flow. To model the free surface, a height distribution of the form

given in Table 3.2 (cases 1PB and 1PC) was assumed. The first part of this

distribution ((<(1) provides the variation of the free surface height in

the developing flow region and the second part ((>_1) gives the height

after the adjustment is completed. The downstream location where the free

surface adjustment is complete is (1"

For the computation with _in : 6fd' the normalized RMS error on the
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Table 3.3:

J

Summary of Computed Optimum Profiles and

Normalized RMS Error _n Pressure

Problem Optimum Profile

Normalized

US Error in

Pressure

Case 1PA (Parabolic Inlet) uniform 0.011

Case 1PA (Uniform Inlet) uniform 0.073

Case IPB A= 7.5

an = 0.2

(1:0.2

0.024

Case IPC A = 3000
an = 0.0445

(1 : 0.05

0.026

Case 2P

Case 2RA

A : 10
an = 0.93

A = 1.43

an = - 0.64

0.054

0.039

Case 2RB A = 27.3
an : 0.72

0.091

Case 3PA t = 1.47
an = 1.52

C = 8.42
D = 1.04
B = 0.29

bn = 1.5

0.014

Case 3PB I = 1.47
an = 1.83

C : 11.11
D = 1.04
B = 0.29
bn = 1.5

0.025

Continued on next page
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Case 3Rt A = 2.05

an = 2.2 -
C = 8.51
D = 1.04
B = 0.37

bn = 1.4

0.033

Case 3RB t = 2.05
an = 2.7

C : 11.01
D = 1.04
B = 0.37

bn = 1.4

0.036
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free surface condition is 0.073. The uniform entranc.e condition provides a
$

higher RIS error than the parabolic entrance since a developing flow

regionis present where the pressure has to conform with the flow

development. An error of this order may be acceptable for a free surface

computation since no variation of height is expected to take place when a

film is introduced at the equilibrium height. In the present

investigation, the normalized US error corresponding to the optimum free

surface profile did not exceed a limit of 0.1. The distance required for

flow development was found to be about five times the film thickness in

this case. l flow is defined.to be fully-developed when the friction

coefficient is within 2 percent of

definition is similar to that

developing flow in closed conduits.

the final equilibrium value. This

given by Kays and Crawford (1980) for

As seen in Fig. 3.3, the adjustment of the film height takes places

for a length of approximately 0.2 L, which in terms of equilibrium height

came out to be 106fd when a film is introduced at a height 20 percent more

than the equilibrium height. In this situation, the velocity profile also

becomes fully-developed at the same location, l film introduced at a

height 20 percent lower than the equilibrium is found to require a shorter

distance for the adjustment of the free surface and the velocity profile.

The variation of the friction coefficient along the length of the film

is shown in Fig. 3.4. The distributions for 6in = 6fd and _in = 0"8_fd are

very close to each other, but for _in = l'2_fd the variation is

significantly different. In the last case, the friction coefficient first

decreases to a value lower than that for the equilibrium condition and then

ii0



rises up to the equilibrium value. This is due to two counter-acting
J

phenomena that affect the film in the developing flow region in this case.

The wall friction propagates outward as the boundary layer develops

beginning from the entrance point which tends to reduce the velocity of the

fluid. The thickness of the film, however, decreases and tends to increase

the fluid velocity due to the area available for the flow. Since the first

effect starts from the wall, it is more dominant in the earlier part of the

flow development and then the second effect

downstream. It can also be mentioned that when

below the equilibrium height, the increase

takes over in the region

the film is introduced

in the film height and the

propagation of the shear stress tend to reduce the film velocity, so the

behavior is not analogous to the case when the film is introduced above the

equilibrium height. In all situations, a plane falling film eventually

attains a fully-developed flow. This was confirmed by comparison of the

velocity profile in a location near the exit. The variation of the

velocity and the friction coefficient were found to be identical in all

situations.

3.5.2 Film Flow Under Zero Gravity

In the absence of gravity, the orientation of the plate becomes

immaterial and an identical flow condition is achieved if the plate is

horizontal, vertical, or inclined. A situation is considered herein where

the film is introduced at a height equal to the equilibrium fully-developed

flow in a falling film system as discussed in the previous section.

absence of gravity, the flow is acted on only by viscous and

forces and the film height is expected to increase downstream.

the free surface, a profile of the form given in Table 3.2 (case

In the

inertial

To model

2P) is

iii



assumed. The flow conditions are also listed in the same table.
J

results are shown in Table 3.3 and Figs. (3.5-3.7).

The

Figure 3.5 shows the variation of the dimensionless film height with

distance, which increases monotonically. The figure also shows the

analytical solution derived in a previous section. The analytical solution

requires the specification of a friction coefficient. In the present

investigation, the friction coefficient was taken from the numerical

solution instead of assuming it to be constant throughout the region. The

comparison between the analytical and numerical solutions appears to be

good in most regions of the flow.

The variation of the w-component of the velocity

locations is shown in Fig.

velocity changes as the flow

fully-developed situation.

at three different

3.6. In contrast to the falling film, the

moves downstream and does not attain a

The profile, however, becomes approximately

parabolic in nature downstream from the entrance, t test of the velocity

profile with a true parabola showed that the maximum deviation is less than

10 percent. The shear stress exerted by the solid wall and the

corresponding friction coefficient are plotted in Fig. 3.7. It can be

noticed that the shear stress decreases continuously as the flow moves

downstream, whereas the friction coefficient has a minimum at an

intermediate location and then increases. The largest variations of the

shear stress occur close to the entrance due to the development of the

velocity from a uniform to a parabolic profile. After the velocity profile

is fully developed in shape, the slight reduction in the shear stress is

due to the deceleration of the flow, which is small compared to the
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reduction of the average velocity in regions, away from the entrance.
t

results in an increase in the friction coefficient.

This

The system where a fluid is introduced at the center of a circular

horizontal plate and spreads uniformly in all radial directions was also

studied. Two different inlet Reynolds numbers were chosen. The flow

parameters corresponding to these cases are shown in Table 3.2 (cases 2RA

and 2RB). The surface profile and corresponding normalized US error for

the surface pressure are listed in Table 3.3.

Figure 3.8 shows the variation of the film height with radial

distance. Case 2RA corresponds to a higher Reynolds number than that of

Case 2RB. It appears that the inlet Reynolds number is a very strong

parameter in determining the behavior of the film as it spreads radially

under zero gravity. At a high Reynolds number, the film decreases in

height monotonically because the inertial forces are greater than the

frictional resistance exerted by the solid wall. Vhen the Reynolds number

is small, the film enters the control volume with a smaller amount of

inertia and is easily overpowered by the frictional resistance. The strong

resistance to the flow causes a rather rapid increase in the film height as

it flows downstream. The figure also shows the film height distribution

predicted by the one-dimensional analysis for case 2RA. The analytical

prediction for this case is found to be comparable with the two-dimensional

numerical solution.

The variation of the velocity across the film thickness is shown in

Fig. 3.9 for two different locations. In both cases, the profile is almost
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parabolic (deviation within 2 percent) but its. magnitude decreases

I

downstream due to the increase in area available for the flow. The

friction coefficients for these two cases are plotted in Fig. 3.10. In

case 2RA, the friction coefficient is smaller in magnitude than that of

case 2RB because the friction coefficient is a function of the wall shear

stress and the local velocity. Case 2RI, which corresponds to a higher

fluid velocity, is expected to encounter more resistance from the wall.

This is precisely the situation as seen in the computed values of the wall

shear stress. _owever, the magnitude of the velocity is a stronger

parameter in the friction coefficient and causes the coefficient to be

lower in case 2RA. In the figure it can be also noticed that in case 2RB,

which corresponds to a smaller flow rate, the friction coefficient starts

increasing soon after the entrance, attains a maximum value at an

intermediate location and then decreases further downstream. In contrast

to case 2RA the velocity profile at the inlet was assumed to be parabolic

in nature. Therefore, a rapid decrease of friction coefficient near the

entrance, which is characteristic of a developing flow, is not found here.

The decrease of the friction coefficient downstream indicates that the

shear stress also decreases very rapidly in that region. This suggests the

possibility of a zero-shear condition further downstream.

3.5.3 Borizonta] Film Flow in the Presence of Gravity

The flow of a plane film and a radially spreading film were also

investigated for a horizontal orientation of the plate where the gravity

acts across the thickness of the film instead of in the direction of the

main flow. The f]ow conditions used here are listed in Table 3.2 (cases 3)

and the corresponding free surface geometry is described in Table 3.3.
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Figures 3.11 and 3.12 present the computational results.

In the case of horizontal flow, two different flow regimes are

encountered. The flow is subcritical or supercritical depending on the

Froude number. Both subcritical and supercritical flows move toward a

critical condition. When the flow enters the control volume as

subcritical, it remains subcritical in the entire domain since a transition

from subcritical to supercritical is not possible. However, if the flow

enters the control volume as supercritical, it may remain supercritical or

transform into a subcritical flow depending on the amount of inertial,

gravitational, and viscous forces it encounters during the flow. loreover,

if a transition is present it must happen as a jump where the height before

and after the jump can be related by the jump condition (eqn. 3.3). In the

present investigation, the supercritical and subcritical branches of the

flow were computed separately and the location of the jump was determined

via the jump condition. In the computation of supercritical flow, the

inlet height and Froude number were appropriately prescribed, whereas for

subcritical flow the outlet condition was prescribed.

In Fig. 3.11, it can be noticed that the jump moves downstream with an

increase in the inlet Froude number. When the inlet Froude number is high,

the flow can maintain its supercritical status for a longer distance.

Figure 3.12 shows the subcritical and supercritical solutions and the

corresponding jump height distribution for the t_o plane flow cases

considered here. _hen the inlet Froude number is increased, the inlet

height decreases if the flow rate is held constant. This causes the

supercritical height of the film to decrease and the jump height to
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increase. Vhen the Froude number is gradually increased at the inlet, a
i

condition is reached when the jump height curve goes above the subcritical

curve and no intersection of the two curves is found in the computational

domain. At that situation, no jump is possible in the region under

consideration and the flow remains supercritical over the entire plate.

Similarly, when the Froude number is gradually decreased at the inlet, the

jump height curve goes below the subcritical curve. In this situation, no

supercritical flow can be sustained and the jump occurs at the entrance.

Comparing the results of plane flow and radial flow, it can be seen

that the propagation of the jump location downstream with an increase in

the Froude number is greater for plane flow than radial flow. In the case

of radial flow, the area increases downstream and causes the flow to slow

down. This results in more rapid reduction of the Froude number of the

flow. Therefore, in a radial system a jump is likely to be present for a

larger range of inlet Froude numbers.

3.6 CONCLUSIONS

I numerical solution procedure for the computation of plane or radial

free surface thin film flows in a normal or zero gravity environment has

been developed. An analytical solution was also derived for a

one-dimensional approximation of the flow. k reasonable agreement between

the numerical and analytical solutions was obtained for most flow

configurations considered here. Three different flow systems were studied:

(a) plane falling film, (b) plane and radial flow under zero gravity and

(c) plane and radial flow on a horizontal plate in the presence of gravity.
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A plane falling film, whether introduced at its .equilibrium height or

at a height above or below the equilibrium, eventually attains the

fully-developed condition. In the fully developed region, the numerical

velocity profile, which is parabolic, matched exactly with the analytical

solution. An estimate on the error bound of the free surface pressure was

developed from the calculation of the developing flow of the falling film

and it was concluded that a normalized _JIS error of less than 0.1 say be

acceptable. The length of the developing region was found to be small.

Both the free surface height and velocity profile appeared to arrive at the

equilibrium condition within 10 times the equilibrium film thickness. The

length was found to be relatively larger when the film begins with a height

above the equilibrium height.

it was found that the film

The

to the

For a plane flow under zero gravity,

thickness monotonically increases as the flow moves downstream.

velocity profile is parabolic except for regions very close

entrance. The shear stress at the wall decreases as the flow moves

downstream. The friction coefficient was computed in terms of the local

average velocity and was found to increase after coming to a minimum at an

intermediate location on the plate.

For radial flow under zero gravity, it was found that at a higher

Reynolds number the film decreases monotonically in thickness as it spreads

downstream, it a smaller _eynolds number, there is a relatively rapid rise

in height and the flow develops a parabolic velocity profile as it moves

downstream.
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For both plane flow and radial flow on a horizontal plate in the
I

presence of gravity, two different flow regimes (i.e., supercritical and

subcritical) are found to be present. The transition of the flow from

supercritical to subcritical is accompanied by a hydraulic jump. The

location of the jump moves downstream with an increase in the inlet Froude

number.
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Section IV

CONPUTATION OF HEAT TRANSFEI IN TVO-DINENSIONAL THIN FrLi FLOV

4.1 SU_URY

The numerically computed flow field and heat transfer coefficient are

presented for the flow of a thin liquid film in the presence or absence of

a gravitational body force. The flow systems studied here include (1) a

film falling down a vertical wall, (2) plane and radial film flow at zero

gravity and (3) plane and radial film flow along a horizontal plate in the

presence of gravity. The heating conditions include isothermal and

uniformly heated surfaces. The transport conditions considered at the free

surface are an adiabatic condition when there is no heat loss from the free

surface and an evaporative free surface maintained at its saturation

temperature. The height of the free surface, flow field and heat transfer

coefficient were found to be strongly affected by the magnitude and

direction of the gravitational body force. They were also found to depend

on the Reynolds number and Froude number of the incoming fluid. The flow

conditions changed continuously downstream except for the falling film,

where a fully-developed condition was established at some downstream

distance. In the case of horizontal flow in the presence of gravity, a

hydraulic jump was found to be present under some flow conditions.
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4.2 INTIODUCTION

J

The heating and evaporation of a thin liquid film are found in many

engineering processes. The desalination of sea water, the distillation of

petroleum products and evaporation in a cooling tower are examples. The

use of evaporative cooling is also becoming common in computer and space

technology because of the high heat rejection requirement per unit surface

area. An understanding of the flow and heat transfer in a thin film for

different magnitudes and orientations of the gravitational body force is

also essential for an appropriate design of the absorber unit of a heat

pump absorption system in earth andspace, which was the motivation for the

present study.

The flow and heat transfer in a failing thin liquid film along a plane

vertical wall has been studied by many investigators since the turn of this

century. For steady fully-developed laminar flow, a theoretical solution

can be derived from a simple balance of momentum and energy (Bird et al.

(1960) and Edwards et al. (1979)). The film height remains constant and

the velocity profile across the film becomes parabolic in the fully

developed region. The friction and heat transfer coefficients become

constant in this region.

The analysis of developing flow when a film is introduced at its

equilibrium height is also available in the literature. Faghri and Payvar

(1979) presented numerical results for laminar flow of a thin liquid film

down a vertical wall. Both uniformly heated and isothermal surface

_;_nditions were considered. The effects of evaporation and gas absorption

on the free surface were also considered in addition to the simple case of
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heating, where the free surface can be considered to be adiabatic.

results compared reasonably well with the available experimental data.

Their

t film falling under the influence of gravity ceases to be laminar and

constant in thickness when the flow rate is high (Re > 50). Vaves tend to

appear on the surface and the flow becomes turbulent as the flow rate is

increased, t number of theoretical as well as

been performed to understand the flow in

regions. Seban and Faghri (1978) reviewed

correlations to find the amount of heat

experimental studies have

wavy-laminar and turbulent

the experimental data and

transfer augmentation due to

surface waves by comparing with results for constant film thickness. Even

though the nature of the waves could not be identified in general, the heat

transfer enhancement due to waves appeared to be significant. The study

covered the cases of heating, evaporation and gas absorption and identified

the nature of the augmentation peculiar to each of these cases. In a later

study, Faghri and Seban (1981) presented a theoretical analysis of wavy

flow assuming a sinusoidal form of the wave. I numerical treatment of

turbulent flow was presented by Seban and Faghri (1976) for three different

turbulence models. The numerical and asymptotic solutions were compared

with their own data as well as previous experiments by Chun and Seban

(1971). In all these numerical heat transfer studies related to falling

films, the height of the free surface was assumed to be constant at its

equilibrium value except for the wavy flow where a sinusoidal form of the

wave was assumed.

The radial spreading of a liquid film over a horizontal plate is also

an interesting free surface problem. _atson (1964) presented results of
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analytical and experimental studies of the radial, spread of a liquid jet
f

impinging on a horizontal plane for laminar and turbulent flows. By using

the boundary layerapproximations for the governing equations, analytical

solutions were derived using a similarity transformation along with the

Pohlhausen integral method. The analysis covered the regions where the

boundary layer thickness is less than the film height and where the film is

totally engulfed by the boundary layer. The effects of the gravitational

pressure gradient was discussed. The possibility of a hydraulic jump in

such a flow was also anticipated. However, the analysis was applicable

only to supercritical flow before, the jump. tn equation was presented to

predict the jump height for any given location of the jump. The agreement

between the experimental data and the analysis was satisfactory. In this

study, the fluid, plate, and the surroundings were maintained at the same

temperature and no heat transfer was present.

Another area of thin film research is the spreading of a film under

the action of a centrifugal force as seen in a rotating system. Sparrow

and Gregg (1959) developed an analytical solution for condensation of

saturated vapor on a rotating surface. The complete Navier-Stokes and

energy equations were simplified to a set of ordinary differential

equations by using a similarity transformation and then integrated

numerically. Their results gave the condensate layer thickness and the

heat transfer coefficient along with

Later, Butuzov and Rifert (1972)

solution of Sparrow and Gregg (1959).

temperature and velocity profiles.

performed experiments to verify the

In a more recent study, Butuzov and

Rifert (1973) presented experimental as well as theoretical results for the

reverse problem of film evaporation from a rotating disk.
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In all of the previous studies concerning thin liquid films, the

investigators ha_e tried to develop analytical models or have taken

experimental data. Some of these models are quite approximate in nature

and do not bring out the finer details of the flow field. I numerical

finite-difference solution was attempted only for a falling film flow where

thickness is uniform and known ahead of time. In general, a free surface

flow is difficult to solve by the finite-difference method since the

surface geometry changes along the path of the flow, is unknown ahead of

time and cannot be fitted in a regular Cartesian or cylindrical coordinate

system, loreover, none of the studies mentioned above considered the flow

under a reduced or zero gravity, which is expected to be different from the

flow under normal gravity, t proper understanding of such flows is

essential in the design of space-based cooling systems.

In a very recent study, Rahman et al. (1989a) (described in section

III of this report) have developed a finite-difference solution method

applicable for fluid mechanics of thin film flows under zero and normal

gravity. I body-fitted coordinate system was used where the free surface

was approximated by a curve and iterated for the best possible solution.

The present study is a continuation of that work where an analysis of the

heat transfer to a thin film is given. In addition to numerical heat

transfer results, the present study includes an approximate theoretical

analysis using the Pohlhausen integral method. The results illustrate the

effects of gravity on the transport for both plane and radial flows.

4.3 |tTnEIITICAL lODEL

The flow configurations considered in the present investigation are
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shown in Fig. 4.1. They can be broadly classified into three groups

according to the presence and orientation of the gravitational body force:

(1) Falling film along a vertical wall

(2) Film flow under zero gravity

(3) Film flow along a horizontal plate in the presence of gravity.

The three possible orientations with respect to gravity are denoted

2, and 3. Ioreover, P and R denote plane and radial flows.

by 1,

The first case is a classical problem where the major driving

mechanism is the gravitational body force. This problem is used to check

the accuracy of the present numerical scheme. The effects of introducing

the film at a height other than the equilibrium height for a given flow

rate will be investigated for this case.

For film flow under zero gravity, two problems will be considered:

(2P) Plane film flow under zero gravity

(2R) Radial film flow under zero gravity

In the absence of any gravitational body force, the orientation of the

plate becomes immaterial. The flow remains the same whether the plate is

vertical, horizontal or inclined. In this case the flow is driven by

inertia and viscous forces. In the radially spreading flow, the area

available for the film increases downstream and acts as an added mechanism

for the reduction of the film velocity.

In the third group, two problems will again be considered according to

the flow geometry under consideration:
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(3P) Plane film flow along a horizontal plate in the. presence of gravity
i

(3R) Radial film flow along a horizontal plate in the presence of gravity

In the case of horizontal thin film flow where the gravitational body

force acts across the thickness of the film, different flow regimes (i.e.,

supercritical, subcritical or both) may be present according to the local

film velocity and height. The transition of the flow from supercritical to

subcritical takes place through a hydraulic jump. Since a sudden

transition of the flow takes place across a jump, special analytical and

computational tools are required to. calculate the flow around this singular

point.

Two different heating conditions are considered. They are an

isothermally heated plate (denoted by symbol T) and a uniform heat flux on

the plate (denoted by E). The thermal condition on the free surface may be

different depending on whether or not there is any evaporation on that

surface. In the case of simple heating with no evaporation, the free

surface may be assumed to be adiabatic in nature. In the case of

evaporation, the free surface temperature will be the same as the

equilibrium temperature corresponding to the ambient vapor pressure. In

the present study, the evaporation is assumed to be small so that the loss

of fluid at the free surface is negligible compared to the mainstream flow.

The equations governing the conservation of mass, momentum and energy

in a thin film may be written as

134



v • v = o , " " (4.1)

DV V2 ; + -'
p ]_-: - Vp + # pg (4.2)

DT V2
]_ = a T (4.3)

The fluid is assumed to be Newtonian with constant properties over the

range of temperatures encountered in the problem.

The body-fitted coordinate system is shown in Fig. 4.2. The local

coordinate axes are directed along the lines joining the centers of

adjacent grid cells. The z-axis is directed in the streamline direction

and the y-axis across the thickness of the film. The velocity resolutes in

the z- and y- directions are w and v, respectively. The boundary

conditions are given by:

aty = O: V = W = 0

T = Tw, for isothermal wallaT

-K aye- = qw' for constant flux wall

(4.4)

aty= 6: r = O, v = O, p = 0

q = O, for heating
T Tsat, for evaporation

(4.5)

at z = 0 or r :
in

w = V. for uniform entrance

In _

w : 1.5 V. [ 2(_) (_)2v ], for parabolic
in entrance

(._.6)
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at z = L or rout:
i

p = O, for cases 1 and 2 (4.7)p #g (6-" y), for case 3

The difference between the static pressure in the flow and the ambient

pressure is denoted by p. On the free surface this quantity has to be zero

when the surface tension is negligible.

4.4 NIIIIgitICIL SOLUTION PROCEDIJ_g

The governing conservation equations (4.1 - 4.3) along with the

appropriate boundary conditions (4._ - 4.7) were solved numerically using a

finite-difference scheme. Since the free surface geometry cannot be

handled very well with a regular rectangular or cylindrical coordinate

system, a boundary-fitted curvilinear coordinate system had to be used. In

this system, the free surface of the film was used as one of the boundaries

of the control volume.

ks shown-in Fig. 4.2, the local coordinates are defined along lines

joining adjacent cell centers. The z-axis was taken in the streamline

direction and y-axis in the direction across the film. The resolutes of

the velocity vectors in the y- and z-directions are v and w, respectively.

In general, the coordinate system was non-orthogonal in nature, i.e., the

faces of a grid cell are not orthogonal to each other. The velocity and

force vectors were resolved into covariant components and the problem was

solved in its physical domain.

The finite-difference equations _ere de_:ived by the application of the

137



principle of the conservation of mass, momentum, and energy to the grid

i

cells. The transport processes for each cell are convection and diffusion.

The mass flux across a cell boundary was computed exactly from the scalar

product of the velocity vector and the vector representing the area of the

cell face. Note that this can be written out in terms of velocity

resolutes and geometrical factors including angles between cell faces. In

the calculation of convection across a cell face, special attention was

given to the change of the orientation of the coordinate axes from cell to

cell and the curvature of a cell face. This resulted in extra terms in the

calculation of convection. However, the representation of convection was

exact and did not involve any approximation due to the non-orthogonality of

the grids.

The calculation of diffusion

convection. The diffusion flux was

system to be locally orthogonal.

was somewhat more complicated than

calculated assuming the coordinate

This neglected the effects of cell

curvature and non-orthogonal orientation. However, the effects were small

in the thin film calculation since the flow is convection dominated,

particularly when the film entered the control volume with a reasonably

high velocity.

The relative importance of convection and diffusion at each cell was

determined from the magnitude of the local Peeler number. 1 hybrid

difference scheme demonstrated by Patankar (1980) was used. The

calculation of the momentum source due to the pressure gradient and that,

due to the gravitational body force could be accomplished without any

appro×imation for non-orthogonality.
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The grid generation was achieved in two steps. -First, the grid cells
J

were formed by algebraic interpolation between the boundary points. This

provided an approximately equal volume for each control cell. The

boundaries for the interior cells were then smoothed to make the cell faces

more orthogonal to each other. This operation resulted in a better

representation of diffusion in the flow field and more accurate

computations, i more elaborate discussion of the numerical formulation is

presented in Rahman et al. (1989a) (or section III of this report) and the

methodology used here is similar to the work by Galen and |arkatos (1987)

where a body-fitted coordinate system was used to predict fire development

in an aircraft.

The number of grids in the z-y plane was determined from a series of

computations with different grid sizes. For radial flow, it was found that

the free surface height along with other computed quantities do not change

any further if the computational mesh is refined beyond 50 x 25 grids in

z-y direction. For plane flow 40 x 20 grids in the z-y plane was found to

be adequate, which precisely predicted the friction and heat transfer

coefficients and the velocity profile in a falling film system. Therefore,

all of the computations were carried out using 40 x 20 grids for plane flow

and 50 x 25 grids for radial flow.

The flow field was solved by using the SIIPLEST algorithm as discussed

by Spalding (1980). One special feature of this algorithm is that in the

discretized form of the momentum equation, the convection terms are lumped

together with the source term. This results in a faster convergence for

some flow conditions. The algorithm works in an iterative manner where the
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continuity equation is transformed and used as a pressure correction
I

equation. The computation start_ by guessing a pressure field. This is

used to determine the velocity components from their corresponding momentum

equations. The modified continuity equation is then used to determine the

amount of pressure correction. The guessed pressure, the amount of

pressure correction and the solution corresponding to the momentum

equations are then assembled together to give the flow rate and pressure

field for that step. The new pressure serves as a guess for the next step.

In each step, once the velocity components are known, the temperature field

is determined by solving the energy'equation (4.3). Since temperature is a

scalar quantity and its equation is linear, the computation of temperature

is less involved than the velocity components. The solution proceeds until

the normalized residual for each equation was approximately 10.6 In the

free surface flow discussed here, both the zero-shear condition and the p =

0 condition at the free surface need to be satisfied. These two conditions

cannot be simultaneously given at a boundary with the existing program. On

the other hand, the free surface geometry, which is unknown in the problem

has to be given before solving the flow field by a finite-difference

method. To avoid this difficulty, an iteration scheme has been adapted as

described below.

(a)

(b)

(c)

Guess a free surface height distribution.

Solve the flow and temperature fields completely for that height

using the zero-shear condition on the free surface boundary.

Find the pressure distribution on the free surface and calculate

its deviation from an ideal zero-pressure free surface. The

measure used here is the normalized US (root-mean-square) error

referenced to the initial total head, which is defined as
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Normalized US Error =_

where Pk is the free surface pressure at the kth node and

the number of nodes adjacent to the free surface.

(d) Calculate and reduce the US error on the free surface by

successive alteration of the surface height distribution.

(e) The results with the minimum error give the required final

solution.

n is

The optimization technique used here is known as the exhaustive search

method. In this method, a general form of the equation representing the

free surface is assumed.

parameters depending on

process, the parameters are given values

analytical solution) or just guessed.

keeping others constant and the trend of

The equation containes

the desired degrees

either

a number of arbitrary

of freedom. To start the

from experience (i.e.,

one parameter is changed

error is observed. That

parameter is changed continuously in successive steps until a minimum in

RMS error is obtained. The parameter is then kept at its optimum value and

the other parameters are changed one by one following the same procedure.

Once the first round of optimization is complete, the first parameter is

changed again in either direction to see whether the error increases or

decreases. The process is continued with the other parameters until an

absolute minimum for a combination of parameters is obtained. The accuracy

of this process depends somewhat on the assump:ion of the form of free

surface. In the results presented here, hyperbolas with two or more
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degrees of freedom were used to represent the computational domain.

The algorithm had to be modified slightly when a jump was present in

the flow field, as in the case of horizontal film flow in the presence of

gravity. Under some flow conditions, both supercritical and subcritical

flows are present, separated by a hydraulic jump. Vhen a jump was present,

the two regimes of the flow ( i.e., supercritical and subcritical) had to

be computed separately and the conditions were matched at the jump

interface. It involved the following operations.

(a) Compute the supercritical film height by imposing the inlet film

height and velocity and optimizing the free surface height

distribution to give the minimum RIS error in the pressure.

(b) Calculate the jump height from the supercritical film height using the

equation

62 1 . Fr_ 1 ] (4.8)

(c)

(d)

where subscript '1' denotes the supercritical condition before the

jump and '2': denotes the condition following the jump. This

relationship can be derived from the momentum balance at the jump.

Compute the subcritical film height by imposing the flow rate and exit

film height and optimizing the free surface profile to give the

minimum RMS error in the pressure.

Tile supercritical and subcritical flows are calculated for the same

flow rate, but for supercritical flow the inlet Froude number is
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fixed, whereas for subcritical flow the exit Froude number is fixed.

(e) The intersection of the jump height and the subcritical film height

determines the location of the jump. The film height before the jump

is given by the supercritical height whereas after the jump the film

height is given by the subcritical height.

(f) The heat transfer coefficient for the supercritical part of the flow

(g)

is determined from the

inlet temperature to

inlet temperature.

supercritical

the control

temperature field, where the

volume corresponds to the actual

The inlet temperature for the subcritical flow is determined from the

exit bulk temperature corresponding to the supercritical solution. By

imposing this condition, the energy balance at the jump is

automatically attained. The heat transfer coefficient in the

subcritical

field.

flow is then determined from the subcritical temperature

In order to increase the computational accuracy for the subcritical

and supercritical flows, the flow involving a hydraulic jump was assumed to

have a parabolic velocity profile at the inlet.

4.5 RESULTS IND DISCUSSION

4.5.1 Falling Film

The flow and transport in a falling film is a widely studied problem

in classical thermo-fluid mechanics. In fully-developed laminar flow, an

analytical solution can be derived for the velocity and temperature fields.

A numerical computation using the present methodology was performed for a

film which has already reached the fully-developed condition at the
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entrance. A parabolic velocity profile with the same shape as given by the

analytical solution was used for the incoming fluid. The Reynolds number

for the film was Re = 12.5. It was found that for the entire domain, the

velocity profile across the film remains about the same and the friction

coefficient was equal to that of the analytical solution. This shows that

the physical characteristics of a fully-developed flow is retained in the

numerical solution. The distribution of pressure on the free surface was

also computed and the normalized I_MS error was determined to be 0.011.

This non-zero value of the error may be attributed to the inaccuracy

associated with the representation of the flow field by finite-difference

equations. This error can be further reduced by more grid points and more

degrees of freedom in the free surface equation.

The developing flow of a falling film when introduced at a height

equal to, above, or below the equilibrium height was also investigated.

The flow conditions are summarized in Table 4.1 and the results are shown

in Figs. (4.3 - 4.5). When the film enters the control volume at the

equilibrium height, the height remains the same and the development of the

velocity profile from uniform to parabolic occurs as the flow moves

downstream. When the film enters with a height other than the equilibrium

height, a gradual adjustment of height takes place until the flow reaches

the equilibrium height. The adjustment of the

development of the velocity and temperature profiles

in this flow.

free surface and the

occur simultaneously

For the computation _here [in = _fd' the normalized RMS error on the

free surface pressure was found to be 0.073. The uniform entrance

1L_



Table 4.1: Flow Parameters and Free Surface Geometry

General data: lO°C• -" T --Tin sat

Tw = 30°C, for isothermal wall

qw = lO00t//m 2, for constant flux wall

Case 1PI: 6in : _fd (= 0.000595 m)

Re = 50, Pr = 7, L = 0.03 m

Free surface: A = Afd

Case 1PB:
6in = 1.2 6fd

Re = 50, Pr = 7, L = 0.03 m

Free surface: _ A = (1 + 7.5 _)-0.2, for

[
= Afd ' for ( > 0.2

_<0.2

Case IPC: _in = 0.8 6fd

Re = 50, Pr = 7, L = 0.03 m

Free surface: _ _ = (1 + 3000 _)0.0445, for

t
afd , for _ > 0.05

< 0.05

Case 2P: 6. = 0.000595 m
in

Re = 50, Pr = 7, L = 0.03 m

Free surface: _ : (1 + 10 _)0.93

(Continued on next page)
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Case 2R: 6in = 0.005 _,
6

Re = 1616, Pr = 7, tin = 0.0508 m,

Free surface: A = (1 + 1.43 _)-0.64

r = 0.1953 m
out

Case 3PA: Frin = 5.7, Frou t = 1.0

Re = 355, Pr = 7, L = 0.1445 m

Free surface:

= (i + 1.47 _)1.52 supercritical

{ 8.42 [2-(1.04 + 0.29 ()1.5], subcritical (( < 1)

Case 3PB:
Frin = 8.6, Frou t =:1.0

Re = 355, Pr = 7, L = 0.1445 m

Free surface:

= (1 + 1.47 _)1.83 supercritical{5 11.11 [2- (1.04 + 0.29 ()1.5], subcritical (( < 1)

Case 3RA:
Frin = 7.4, Frou t = 1.0

Rein = 202, Pr = 7, rin = 0.0639 m, rou t = 0.1953 m

Free surface:

h : (1 + 2 05 _)2.2 supercritical

{ " ,h = 8.51 [2- (1.04 + 0.37 _)1.4], subcritical (( < 1)

Case 3RB:
Frin = ii.0, Frou t = 1.0

• = 202 Pr : 7 r. = 0 0639 m, = 0.1953 mRein ' ' in " rout

Free surface:

A : (1 + 2.05 ()2.7 supercritical{ 11.01 [2- (1.04 + 0.37 _)1.4!, subcritical (_ < 1)
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condition has a higher US error than _he parabolic entrance since a
I

developing flow region is present where the pressure has to conform with

the flow development. An error of this order may be acceptable for a free

surface computation since no variation of height is expected to take place

when a film is introduced at the equilibrium height. In addition to

obtaining the height distribution with the minimum error, the normalized

RIIS error corresponding to the optimum free surface profile does not exceed

a limit of 0.1. The distance required for flow development was found to be

about five times the film thickness in this case. A flow is defined to be

fully-developed when the wall shear "stress is within 2 percent of the final

equilibrium value. This definition is similar to that given by Kays and

Crawford (1980) for developing flow in closed conduits.

The distance required for the development of the temperature profile

was found to be somewhat larger than the flow field. For an isothermally

heated wall, the heat transfer coefficient reached within 2 percent of its

final equilibrium value at about 206fd for heating and 406fd when

evaporation was present on the free surface. In the case of evaporation,

the fluid was assumed to enter

temperature. A flow with a

longer entry length, which

evaporation, respectively.

the control volume at its saturation

uniformly heated wall required a somewhat

were 256fd and 456fd for heating and

It can be noticed that pure heating has a

smaller entrance length than that of evaporation. In both cases, the heat

transfer coefficient is very high near the entrance and reduces downstream.

Since heating has a higher heat transfer coefficient, it requires a smaller

length for development than the length required for evaporation. It is

also worth mentioning that the definition of the heat transfer coefficient
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is different in the two cases as given by

qw (Tw - Tb)' for heating
h = qw (Tw - Tsar)' for evaporation

(4.9)

Figure 4.3 shows the variation of the film height along the plate.

The adjustment of the film height takes places for a length of

approximately 106fd when the film is introduced at a height of 20 percent

more than the equilibrium height. In this situation the velocity profile

also becomes fully-developed at the same location. A film introduced at a

height of 20 percent lower than the'equilibrium is found to take a shorter

distance for the adjustment of the free surface and the velocity profile.

The variation of the Nusselt number along the length of the film are

shown in Figs. 4.4 and 4.5 for isothermal and uniformly heated surface

conditions, respectively. The Nusselt number here has been defined as

1/3

This definition is more widely used in falling film literature where

(u2/g) 1/3 has been used as a length scale, tnother way of defining the

Nusselt number is in terms of the film thickness as given by

* h6
Nu = F (4.11)

This is more universal and applicable for zero gravity flo_s which will be

discussed in a subsequent section.
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In all cases, the Nusselt number is ver Lhigh near the entrance. This

i

is because the thermal boundary layer starts developing from the entrance

point on the plate. It decreases downstream and eventually attains an

asymptotic value when the flow is fully developed. The distribution for

6in = 6fd and 6in = 0.8 6fd coincide with each other and differ by a small

amount from the distribution for 6in = 1.26fd. t smaller heat transfer

coefficient near the entrance when 6in = 1.26fd is due to the fact that

local film thickness there is larger and offers a greater resistance to

heat transfer, loreover, the average fluid velocity there is smaller for

this case. It also appears that the heat transfer coefficient becomes

uniform downstream whether the film is introduced at a larger or smaller

height than the equilibrium. This is analogous to the previous observation

that the film height also attains the equilibrium value after some distance

from the inlet. The Nusselt number in terms of film thickness, Nu , was

also computed. It was found that in the case of evaporation, the Nusselt

number asymptotically approaches unity, the value predicted by the analysis

of fully developed flow.

4.5.2 Film Flow Under Zero Gravity

In a gravity-free environment, the orientation of the plate becomes

immaterial and an identical flow condition is achieved whether the plate is

horizontal, vertical, or inclined. A plane flow is first considered where

the film is introduced at a height equal to the equilibrium fully-developed

flow in a falling film system as discussed in the previous section. Tile

free surface is modeled by assuming a height distributicm of the form given

in Table 4.1. The constants appearing illthis equation are optimum values

determined by the minimization of the error of the free surface pressure.
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The results are shown in Figs. (4.6-4.8).

Figure

which increases monotonically. In the absence of

acted on only by viscous and inertial forces.

maximum at the entrance and decreases downstream.

4.6 shows the variation of the film height along the plate,

gravity, the flou is

The effect of inertia is

The resistance from the

wall acts to slow down the fluid, which results in an increment in the

height in order to preserve the continuity of the flow. The variation of

the Nusselt number for different boundary conditions for this case are

shoun in Figs. 4.7 and 4.8. The shape of the curves appear to be similar

for pure heating and evaporation, but differ someuhat between the

isothermally heated and the uniform heat flux surface conditions.

The Nusselt number considered here is Nu , uhich depends on two

parameters, namely, the film height and the heat transfer coefficient. As

expected in any developing flou, the heat transfer coefficient is maximum

at the entrance and decreases dounstream. The film height, however, has an

opposite trend. The net result is the variation presented in Figs. 4.7 and

4.8. The sudden drop of the Nusselt number near the entrance is due to the

rapid change of the heat transfer coefficient as the thermal boundary layer

develops from the leading edge at the entrance section. Except for this

region, the Nusselt number has a small variation if the plate is

isothermal. Ioreover, when there is evaporation over an isothermal

,
surface, Nu is about unity. This shows that heat transfer process becomes

primarily diffusive after a short distance from entrance. _'hen the plate

is uniformly heated, the _u gradually increases downstream after ti_e

sudden drop close to the entrance. In this case, the reduction of the heat
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transfer coefficient with distance is relatively smaller and easily
f

overpowered by the increment in the film height. Analogous to the falling

film system, the Nusselt number for heating is always found to be larger

than that for evaporation.

The situation where a fluid is introduced at the center of a circular

plate and spreads uniformly in all radial directions is now considered. In

a radially spreading flow, the area available for the fluid increases

downstream and acts as an added mechanism to control the film height and

the associated transport phenomena. Since spreading tends to reduce the

film thickness and friction tends to increase it, the height of the film

may increase or decrease downstream depending on the flow rate and inlet

height. The behavior of the flow may be characterized by the inlet

Reynolds number.

given in Table

particular flow

downstream.

The optimum film height distribution for Re. = 404 is
in

4.1 and is graphically shown in Fig. 4.6. For this

condition, the film height decreases monotonically

The Nusselt number variations for radial flow considered here are

shown in Figs. 4.9 and 4.10. kna!ogous to the plane flow case, there is a

sudden drop of Nu close to the entrance. For a uniformly heated surface,

the Nusselt number keeps decreasing downstream for the heating and

evaporation situations. In most developing flows, the heat transfer

coefficient is maximum at the entrance and decreases with the growth of

thermal boundary layer. In this case, the film height also decreas,:_s

downstream, so this trend in the Nusselt number is e'xp¢.ted.'c For an

isothermal surface, however, the Nusselt number drops to, a minimum at an
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intermediate location on the plate and then gradually increases as the flow

moves further downstream. This trend also indicates that, for an

isothermal surface, the heat transfer coefficient has to have a minimum at

an intermediate location on the plate. In the results of the heat transfer

coefficient, it was found that a minimum is indeed present for both

isothermal and uniformly heated surfaces. This phenomenon can be explained

by the fact that in a radially spreading flow with the rapid reduction of

the film thickness, the thermal boundary layer engulfs the entire film

downstream from entrance for a moderate Prandtl number fluid considered

here. Therefore, with a further reduction of film thickness, the thermal

boundary layer thickness also decreases and results in a reduction of the

resistance to heat transfer from the wall to the fluid.

It is also worth mentioning that for both plane and radial flows at

zero gravity, the flow field never came to an equilibrium fully-developed

condition. The velocity profile across the film thickness, however,

appears to be parabolic at most locations of the flow.

4.5.3 Horizontal Film Flow in the Presence of Gravity

The flow of a plane film and a radially spreading film were also

investigated for a horizontal orientation of the plate where the gravity

acts across the thickness of the film instead of in the direction of the

main flow. The flow conditions used here and the

surface height distribution are listed in Tab]e 4.1.

present the computational results.

corresponding free

Figures (4.11-4.16)

Two different flow regimes are encountered in the case of horizontal
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flow. The flow is either subcritical or _upercritical depending on the
J

Froude number. The subcritical and supercritical flows move towards a

critical condition. When the flow enters the control volume as

subcritical, it remains subcritical in the entire domain since a transition

from subcritical to supercritical is not possible. However, if the flow

enters the control volume as supercritical, it may remain supercritical or

transform into a subcritical flow depending on the amount of inertial,

gravitational, and viscous forces it encounters during the flow. loreover,

if a transition is present it must happen as a jump where the height before

and after the jump can be related.by the jump condition [equation (4.8)].

In the present investigation, the supercritical and subcritical stems of

the flow were computed separately and the location of the jump was

determined via the jump condition. In the computation of supercritical

flow, the inlet height and Froude number were appropriately satisfied,

whereas for subcritical flow, the outlet condition was satisfied.

In Figs. 4.11 and 4.14, it can be noticed that the jump moves

downstream with an increase in the inlet Froude number. Vhen the inlet

Froude number is high, the flow can maintain its supercritical status for a

longer distance. It can also be seen that the propagation of the jump

location downstream with an increase in the Froude number is greater for

the plane flow than the radial flow. In the case of radial flow, the area

increases downstream and causes the flow to slow down. This results in

more rapid reduction of the Froude number of the flow. Therefore, in a

radial system a jump is likely to be present for a larger range of inlet

Fr!mde numbers.
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The distribution of the heat transfer coefficient for different
o

thermal boundary conditions are plotted in Figs. 4.12 and 4.13 for plane

flow and in Figs. 4.15 and 4.16 for radial flow. It appears that the

Nusselt number decreases rapidly close to the entrance as the thermal

boundary layer develops, llso, the Nusselt number increases at the

location of the jump. A sudden transition of the flow happens at the jump

and the thermal boundary layer starts growing again after the jump. In the

present study, the heat transfer in the supercritical and subcritical flows

were computed separately by matching the temperature and heat flux at the

jump location. Therefore, the .heat transfer coefficient at the jump

location may not be correct. However, the trend that the heat transfer

coefficient increases at the jump is consistent with the physical behavior

of the flow. Except for the jump and leading edge of the boundary layer,

the Nu decreases slowly with the horizontal distance in the supercritical

part of the flow and remains approximately constant in the subcritical stem

of the flow. In Figs. 4.11 and 4.14, it is noticed that for both plane and

radial flows, in supercritical regime the film height increases with

distance, whereas in the subcritical regime it decreases with distance.

_hen the height of the free surface increases and the fluid velocity

decreases, the heat transfer from the plate to the fluid is expected to

decrease downstream. In subcritical flow, however, the fluid velocity

itself is smaller and a balance is established between the thickness of the

thermal layer and the velocity of the fluid near the wall. Figure 4.13

also shows a plot of Nu for the case of heating on a horizontal uniform

,
flux surface. It can be noticed that the increment of Nu at the jump is

much larger than that correspanding to Nu. Since _,he film height and heat

transfer coefficient both increase at the jump, this rise in Nu is quite



expected. The figure also shows that the numerical value of Nu

J

the value predicted by theoretical solution.

approaches

4.6 CONCLUSIONS

Numerically computed results for heat transfer in a thin liquid film

are presented. The flow situations considered are: (a) plane falling film,

(b) plane and radial flow under zero gravity and (c) plane and radial flow

on a horizontal plate in the presence of gravity. In all cases, two

thermal boundary conditions at the wall, namely, isothermal and constant

heat flux, and two free surface thermal boundary conditions, namely,

adiabatic and evaporative are considered, t curvilinear body-fitted

coordinate system is used to handle the irregular flow geometry.

It was found that in a falling

fully-developed region is present where the

balanced by the viscous shear force at

introduced at the equilibrium height or at a

film system, an equilibrium

gravitational body force is

the wall. The film, whether

height above or below the

equilibrium, eventually attains this fully-developed condition. In the

fully developed region, the numerical velocity profile matched exactly with

the analytical solution irrespective of the entrance condition of the film.

The heat transfer coefficient also attained its fully-developed value and

matched well with the analytical solution for all of the entrance

conditions.

Tile length required for the development of the flow _'as f,:)u_ld to be

small. _,_h the free surface height and the velocity pro)file appeared to

arrive at the equilibrium condition within lO times the equilibrium film
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thickness. The development length was found to be relatively larger for

heat transfer. A length of 20-25 times the film thickness was required for

the development of the equilibrium heat transfer conditions when the film

was just heated and no evaporation was present on the free surface. In the

presence of evaporation, the development length was even longer, being

about 40-45 times the film thickness. There was a small difference in the

heat transfer coefficient and the development length for different entry

conditions considered here.

For a plane flow under zero gravity, it was found that the film

thickness monotonically increases as the flow moves downstream. For an

isothermally heated wall, the heat transfer coefficient gradually decreased

downstream. The Nu in this situation was approximately constant except

for regions very close to the entrance. For a uniformly heated walt, the

,
Nu reached a minimum at an intermediate location close to the entrance and

then increased slowly downstream.

In the case of radial flow under zero gravity, it was found that for

the flow rate considered here the film thickness decreases monotonically as

it spreads downstream. In this situation, the Nusselt number was also

found to decrease monotonically when the plate is uniformly heated. For an

isothermal wall, however, the Nusselt number reached a minimum and then

slowly increased downstream. This behavior of the heat transfer is related

to the thinning of the film and growth of thermal boundary layer in a

diffusiondominated heat transfer process.

For both plane flow and radial flo_ on a horizontal plate in the
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presence of gravity, two different flow regimes (i.e., supercritical and

subcritical) are found to be present. The transition of the flow from

supercritical to subcritical is accompanied by a hydraulic jump. The

location of the jump moves downstream with an increase in the inlet Froude

number. The heat transfer coefficient is discontinuous at the jump. In

the supercritical region, it decreases gradually downstream, whereas in the

subcritical region, it remains approximately uniform at most locations on

the plate.

• . .+

• : .+ .
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Section V

DEVELOPMENT OF A NEV COMPUTATIONAL METHODOLOGY FOR THE

FREE SURFACE FLOVS USING A PERffEABLE MALL

5.1 SmO[llY

A new computational procedure for determining the structure of the

free surface flow of a thin liquid film is presented. The iterative method

assumes the free surface to be a porous wall where transpiration through

the wall is allowed while maintaining it at a constant pressure condition

with no shear stress. The Eulerian computation uses a body-fitting

coordinate system and an iteration procedure where successive improvements

of the free surface geometry is attained from the velocity components on

the free surface. In the final iteration, the transpiration becomes

negligibly small and thereby the free surface forms a streamline. This new

algorithm has the advantage over existing computational methods in that a

complete two-dimensional solution of the flow field and heat transfer

coefficient can be obtained and can be applied to complex flow problems

like a hydraulic jump. The computed results include plane and radial flows

involving a hydraulic jump and those flows at zero gravity where

can be present. The details of the flow structure, the

coefficient andthe heat transfer coefficient are presented.

no jump

friction

.. .- . ' . . . , •
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5.2 INTRODUCTION

Free surface flows are encountered in a wide variety of physical

phenomena. The flow in a river or water channel, the flow of a thin film

during evaporation or condensation, and the impingement and spreading of a

liquid jet on a solid wall are a few examples. All of these phenomena

share a common feature in that the domain of interest has an unknown

boundary, the structure of which depends on the flow and the ambient

conditions. The complexity of the subject is associated with the knowledge

of the free surface location in conjunction with the satisfaction of the

appropriate boundary conditions and governing equations. These flows are

also heavily influenced by the magnitude and direction of the gravitational

body force. The motivation of this study is to develop a comprehensive

computational tool for free surface flows both on earth and in space.

Like any external flow adjacent to a solid surface, the viscous

effects in a free surface flow are also confined to a boundary layer

adjacent to the solid boundary. Therefore, inviscid flow models can be

used for flows involving a depth much larger than the boundary layer

thickness. The open channel flows in a river fall into this category. An

extensive review of numerical methods for potential flow involving a free

surface is presented by Yeung (1982). His review covered both linear and

non-linear flow problems and three major categories of methods:

finite-difference, finite element, and boundary integralequations. The

possibility of using a boundary-fitted coordinate system for the

representation of free surfaces was also discussed. He concluded that

hybrid methods based on matching an interior numerical solution with an

exterior analytical representation is the most rational procedure.
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The potential flow solution becomes inadequate when viscous effects

are important for the flow under consideration, and the solution of the

complete Navier-Stokes equation becomes necessary. The numerical

techniques presently in use for this class of problems can be divided into

three categories, namely, (a) surface-tracking methods, (b) volume-

tracking methods and (c) moving-grid methods.

In surface-tracking methods, the interface is specified by an ordered

set of imaginary points; between these points its position is approximated

by an interpolant, which is usually a piecewise polynomial. This

time-dependent interface divides the flow domain into connected regions in

which different fluids exist. One of the variants of the surface-tracking

method is the height-function method used by Hirt et al. (1975). The free

surface was represented by its distance from a fixed surface. This

distance (height) changed with time and was governed by an equation

expressing the fact that the interface must move with the local flow field.

t more couonly used technique to track a surface is to track a string of

imaginary particles spread along the density interface, twn (1979) applied

this method for solving flame propagation. Jun (1986) developed an

improved version of the interface-tracking method where the location of the

interface was solved by a scalar equation. He applied his technique to

compute the sloshing motion of a liquid in a tilted tank, as well as the

drainage of a pipe under normal and zero gravity conditions.

In a volume-tracking method, the interface is specified by the colon

boundary of the two regions adjacent to each other. The region is

identified by its possession of fluid markers of a particular kind. The
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reconstruction of the actual surface shape requires the knowledge of fluid

markers in the area under consideration. One of the earliest volume-

tracking methods is the iarker and Cell (MAC) method of Harlow and Velch

(1965). Marker particles are scattered initially to identify each fluid

region in the calculation domain. These particles are transported in a

Lagrangian manner along with the fluids. Amsden and Harlow (1970)

developed a simplified MAC method called SMAC, which had some mathematical

advantages over its predecessor. More recently, Hirt and Nichols (1981)

designed a different variation of the volume-tracking method called the

fractional volume of fluid (VOF) method, which requires less storage than

the MAC method.

In moving-grid methods, the original grid system can be adjusted to

approximate the interface. The governing equations are then solved on the

new distorted grid by treating the grid points on the density interface as

a moving boundary. In this manner, undesirable numerical mixing between

the different fluid regions is reduced or avoided. One way to formulate a

moving grid algorithm is to use a rectangular Cartesian or cylindrical

coordinate system and at each iteration move the interface to the nearest

cell wal ! so _hat a grid cel _ always contains one particular fluid. & more

improved method, as used by Jun (1985), is to partially block a grid cell

to form the interface within a rectangular Cartesian

cell.

The numerical methods

approach for solution and

loreover, none

or cylindrical grid

described above have mostly used a Lagrangian

dealt primarily with transient problems.

of these studies have considered low Reynolds number flow
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like a thin film flow where viscous effects are predominant. In a very

recent study, Rahman et al. (1989a) (described in section III of this

report) developed a new moving-grid method, where a boundary-fitted

coordinate system was used and the free surface was taken as one of the

boundaries of the computational domain. The primary emphasis of that study

was to understand low Reynolds number flows as encountered in a thin film,

both in normal and zero gravity environments. Both plane flow over a

surface and radially spreading flow were considered. Their results showed

that the gravitational body force has a strong influence on the structure

of the free surface. A hydraulic jump was found to be present when a

gravitational body force acted across the thickness of the film. In that

situation, two distinct flow regimes were found to be present, which are

supercritical flow upstream from the jump and subcritical flow downstream

from the jump. In that study, the free surface was represented by an

analytical equation with two or more arbitrary constants. The constants

were optimized with an exhaustive search method where the final solution

most closely matched the atmospheric (or ambient) pressure distributio_ on
• . .. • ;

the free surface.

Even though the study by Rahman et al. (1989a) handled most low

Reynolds numbe r flows fairly well, difficulties were encountered in

handling flows involving a hydraulic jump, where two regions of the flow

(supercritical and subcritical) could not be computed as a single-domain

problem. The computations were done separately for the two regions and the

solutions were matched at the location of the jump. This procedure, even

though the location of the jump was correctly predicted, could not account

for the details of the flow field and heat transfer behavior in the

vicinity of the jump. An effort to remove this drawback led to the
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invention of the present algorithm, which can solve the problems involving

a hydraulic jump as a single domain problem. It is essential to have this

feature in the calculation of thin film flow over a rotating surface, which

is one of the motivations for the initiation of the present efforts. It is

also found that the present algorithm is more universally applicable to any

free surface problem in the presence or absence of a gravitational body

force. Unlike any other method presented above, the present procedure

assumes the free surface to be a permeable wall through which fluid may

leave or enter the control volume depending on the ambient and local static

pressures. The location of the surface is improved by successive

iterations until penetration through the free surface become negligible.

5.3 GOVER/_ING EQUATIONS

The present numerical methodology will be tested against a number of

steady free surface problems both in normal and zero gravity environments.

The problems considered here are schematically shown in Fig. 5.1. They are:

(a) The two-dimensional flow of a plane thin film over a plate, 'as

introduced from a pressurized fluid reservoir in a gravity-free

environment.

(b) The radially spreading flow of a thin film over a plate as initiated

by an impinging fluid jet or pressurized reservoir at the center of

the plate in a gravity-free environment.

(c) The plane flow over a horizontal plate in the presence of gravity

where a hydraulic jump is present.

(d) The radially spreading flow over a horizontal plate in the presence of

gravity where a hydraulic jump is present in the computation domain.
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/
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The coordinate system on a grid cell

Flow out

f
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Plane flow under zero gravity
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Radial flow under zero gravity

,t/////,I//////f////

Plane hydraulic jump

//////////////////

Radial hydraulic jump

Fig. 5.1. The coordinate and flow systems in the present investigation
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In all of these problems, the heat transfer behavior in the liquid

layer will be studied by assuming the solid wall temperature to be higher

than the temperature at which liquid enters the control volume. The wall

also remains at an isothermal condition for the entire length of the flow.

In the case of simple heating with no evaporation, the free surface may be

considered to be adiabatic in nature. In the case of evaporation, the free

surface remains at an isothermal condition with a temperature equal to

saturation temperature corresponding to the ambient vapor pressure.

the problems considered here, the evaporation is assumed to be small

that the loss

mainstream flow.

the

For

SO

of fluid at the free surface is negligible compared to the

The equations governing the conservation of mass, momentum and energy

in a liquid layer involving a Newtonian, constant-property fluid can be

written as

v • v - o '

Bv (5.2)]_ = - Vp * vV2 _ + g

DT
D'_ = aV2 T (5.3)

Figure 5.1 also shows the coordinate system used

coordinates are directed along the lines joining

adjacent grid cells. The z-axis is directed along the

mainstream

here. The local

the centers of the

direction of the

flow and y-axis is directed across the thickness of the film.
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The velocity

respectively.

given by

aty=O:

aty= 6:

resolutes in the y- and z-directions are v and w,

The boundary conditions for the problems considered here are

v - w - o, T - Tw (5.4)

--t -=t

r.n = O, r.t = 0
n

q = O, for heating

T Tsa t, for evaporation

(s.s)

at z = 0 or rin: w = Win , for uniform entrance (5.6)

{ w = 1.5 I/in [2 (_) (_)2], for parabolic entrance

v=O

at z -- L or rout: _ = O, p = pg (6- y) (5.7)

Fr = 1, for flows involving a jump

The normal stress condition on the free surface leads to equations

balancing the pressure and other stresses including surface tension.

,
Scaling these equations, one can show that, for thin film flow where Re
• • • - . -.. .4 .....

and We are large, the pressure on both sides of the free surface must be

the same. The quantity p is defined to be the difference between the

static pressure in the flow and the ambient pressure. In the absence of

any significant surface tension and tangential stress from the ambient

fluid, this quantity becomes zero on the free surface. At the outlet end,

the pressure gradient is hydrostatic in nature. The local parabolic

approximation in numerical computation eliminate any rigorous specification
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of v and w at that point.

5.4 NU_IXCJLL SOLUTION PIOCEDULE

A finite-difference numerical scheme was used for the solution of the

governing equations (5.1-5.3) along with the appropriate boundary

conditions (5.4-5.7) for the different problems considered here. To

properly handle the irregular free surface geometry, a curvilinear

body-fitted coordinate system was used, where the free surface was taken as

a coordinate surface.

The computational domain was divided into a non-uniform mesh where

more grid cells were placed at locations where steeper variations of the

flow and heat transfer are expected to take place, like the vicinity of a

hydraulic jump. The

between boundary points.

nature.

cells were formed by an algebraic interpolation

In general, the cell faces were non-orthogonal in

". . • .

The local coordinates were defined along lines joining the adjacent

grid cells as shown in Fig. 5.1. The z-axis is in the streamline direction

and the y-axis is across the thickness of the fluid layer. The velocity

vectors were resolved into co-variant components and the problem was solved

in its physical domain.

. °

The finite-difference equations were derived by the application of the

principles of the conservation of mass, momentum and energy to the grid

cells. The derivations used ideas similar to those presented by Rahman et

al. (1989a) or section III of this report. The hybrid difference scheme,
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as demonstrated by Patankar (1980) was also incorporated in the

formulation. This basically determined the total contribution (convection

and diffusion) to a cell • from itsneighbors as a function of the cell

Peclet number.

The flow field was solved by using the SIMPLEST algorithm as presented

by Spalding (1980). One special feature of this algorithm is that in the

discretized form of the momentum equation, the convection terms are lumped

together with the source term. This results in a faster convergence than

its predecessors SIIPLE or SIMPLER as described in Patankar (1980). The

SIMPLEST method also works in a iterative manner where the continuity

equation is transformed and used as a pressure correction equation. The

computation starts by guessing a pressure field. This is used to determine

the velocity components from their corresponding momentum equations. The

modified continuity equation is then used to determine the amount of

pressure correction. The guessed pressure, the amount of pressure

correction and the solution corresponding to the momentum equations are
..

then assembled together to give the flow rate and pressure field for that

iteration step. The new pressure serves as a guess for the next step. The

discretized equations for theve!ocity components were solved slab-by-slab

marching in the z-direction, whereas the pressure and temperature were

solved by the whole-field method. The convergence of the solution was

monitored by examining the normalized residuals for each equation and by

spot-checking values of the pressure, velocity components, and temperature

at critical locations in the flow. The computation proceeded until the

magnitude for all of the residuals became negligibly small and the

spot-checked values attained an invariant condition. The computed results
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were also tested for grid independence by systematically varying the number

of grids in both the y- and z-directions, i value of 25 grids was found to

be adequate in the y-direction, whereas 50 to 150 grids were used in the

z-direction for the problems considered here.

In any computational scheme for a free surface flow, the major

difficulties encountered are in handling the free surface itself. First,

the geometry of the free surface needs to be specified before solving the

flow using a finite-difference scheme. On the other hand, the geometry

itself is dependent on the flow conditions, ioreover, a number of boundary

conditions needs to be satisfied: (a) the free surface is a streamline (the

velocity vector on the surface must be tangent to the surface itself at all

locations) (b) a zero-shear condition must exist on the surface and (c) in

the absence of any significant surface tension, the static pressure of the

fluid next to the free surface must be equal to the ambient pressure, tll

of these conditions are satisfied simultaneously for only the correct

location of the free surface, and therefore some of the conditions .are

violated when an assumed free surface profile is used to initialize the

solution process. Thus, one has a choice of which boundary condition he

wants to satisfy exactly. In the •present algorithm, the boundary

conditions (b) and (c) are satisfied exactly, whereas an iteration process

is introduced to arrive at condition (a).

It is assumed that the free surface is a permeable wall through which

fluid particles may leave or enter depending on the pressure on the two

sides of the surface. The ambient pressure is prescribed, in outflow

takes place when the static pressure of the fluid inside the control volume
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is higher than the ambient pressure, whereas an inflow occurs when the

ambient pressure is higher. Since inflow or outflow is permitted, the

velocity vector at the surface is no longer aligned with it, so an

iterative scheme can be devised to adjust the surface so that a streamline

condition on the free surface can be approached. Another criterion to

follow is to minimize the loss or gain of fluid through the surface. The

scheme works as follows:

(1) Prescribe a free surface height distribution.

(2) Solve the flow field completely for that height using p = 0 as the

boundary condition on the free surface.

(3) Find the amount of penetration of the fluid through the surface at all

locations along the flow.

(4) Calculate the deviation from the zero-penetration condition. The

measure used here is the normalized root-mean-square of the

penetration.

1 n 2

- z (qloss)k
n k=1

Normalized penetration =

• ..... • -.. ,. : :. qin

(5) Calculate the new free surface height by adding a correction to the

old height. As shown below, the correction is determined from the

Cartesian components of the velocity vector on or near the free

surface by satisfying the condition that the free surface is a

streamline. The method is analogous to the moving height function

approach used by Hirt et al. (1975).
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(6) Continue iterating until the normalized penetration attains a minimum

value.

(7) Qnce the location of the free surface is determined, solve for both

the flow and temperature fields for that surface profile.

The correction in the film height is determined from the penetration

rate at the free surface. The velocity component across the film that is

associated with the penetration can be estimated to be

d6 (S.S)
Vloss = vc- _Wc

where v c and wc are the Cartesian components of the velocity vector at the

cell next to the free surface. Ve need to drive Vloss to zero to arrive at

the streamline condition on the free surface. Therefore, a new height can

be determined as

_ki+I 6 i Az (5.9)
- k + (Vloss)lwcl

I

[i

i ii

[

A central difference is used to calculate the slope of the free surface

from theheight in the previous iteration. This resulted in the equation

• ° •

An alternative formulation for the film height correction was also

derived by using the iacCormack predictor-corrector method, as presented by

Anderson et al. (1984), which resulted in the formulation:
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k k 1'= + _wcJk

for wc > 0 (5.11a)

: k- k+1÷ k-1'

for wc < 0 (5.Iib)

The correction scheme needed to be modified slightly at the downstream

boundary since only the values on one side of the cell were available. The

upstream boundary did not pose any problem since the film height there

remained constant. Computations with either equations (5.10) or (5.11)

were found to be equally good, and lead to the same final solution.

The procedure required a reasonably good guess of the initial free

surface height for uniform convergence within a reasonable number of

iterations. Since penetration is allowed on the free surface, a surface

profile far from the actual free surface produces outflow on the order of

the mainstream flow and leads to divergence. Therefore, an initial guess

is limited to a surface which yields penetration smaller in magnitude than

the mainstream flow. In the calculations presented here, the start-up

solution was calculated using a 'pressure-optimization method' as presented

by Rahman et al. (1989a) or section III of this report. Since that method

is robust and was available to us, it was used here to obtain faster

convergence. However, one may start from an approximate analytical

solution given in section VI or the one-dimensional numerical solution

presented in section I. However, as expected the convergence time depends

on the initial condition. Hence, a crude starting solution may take a
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relatively longer period for convergence. The recommended procedure is to

use the present method in combination with the 'pressure-optimization

method' presented by Rahman et al. (1989a). The former doing the fine

tuning on the global variations predicted by the latter.

The correction scheme for the free surface height may require

under-relaxation to make the algorithm stable and uniformly convergent.

Also, some smoothing may be required to get around fluctuations that are of

the same order of the grid size. Vhen the fluctuations were large, a

polynomial fit of the new height was used. As used by Hirt et al. (1975),

the smoothing of the free surface from one iteration to the next is

required to preserve a better continuity of the free surface profile.

In order to dampen out the effects of flow development, a parabolic

velocity profile is assumed to be present at the inlet during the iteration

procedure. Since penetration through the surface is primarily a function

of the pressure and velocity components, and the energy equation is not

coupled tothe continuity or momentum equations, the flow field is solved

first as an isothermal problem during the iterations and the energy

equation is solved only whenthe free surface location is established.

This minimizes the computational effort to some extent.

5.5 DISCUSSION OF I_SULTS

5.5.1 Film Flows in the Absence of Gravity

Ve now consider the flow of a thin film in a gravity-free environment.

In the absence of any other body or surface force, the flow is acted on

only by inertial and viscous forces. Therefore, the orientation of the
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solid wall, whether vertical, horizontal or inclined, does not play any

role in the behavior of the flow. Both plane and radial flows are

considered here. The results are presented in Figs. 5.2-5.6.

The predicted variation of the film height for plane film flow under

zero gravity is presented in Fig. 5.2. The Reynolds number for the flow is

Re = 50, which is in the laminar flow regime. The properties used are for

water at 20°C under normal atmospheric conditions. The film height

increases monotonically with distance. As the fluid moves downstream, it

decelerates due to friction and consequently the height of the film

increases to preserve the continuity of the flow. The figure also shows

the film height predicted in previous investigations. The previous results

for two-dimensional flow using the pressure optimization method is quite

close to the present numerical solution. This is expected since both

studies preserved the two-dimensional behavior of the flow field, and did

not make any approximations to simplify the problem. One constraint on the

free surface geometry in the studies of Rahman et al. (1988a) is that .the

free Surface conforms to an algebraic equation with two or three degrees of

freedom. This constraint is removed in the present study, where the free

surface can conform to the local flow conditions in a more exact fashion.

The degree of freedom attained here is the same as the number of grids in

the main flow direction. Even though an algebraic equation is easier to

use, the discrete representation of the free surface as done here leads to

more accurate results. Figure 5.3 shows the distribution of the penetration

rate through the free surface. Comparing the amount of flow through the

free surface, it was found that the present free surface has about 307, less

penetration than the surface predicted by the method in Rahman et al.
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(1989a) for the same flow conditions. The average penetration rate through

the surface was found to be only 0.6Z of the entrance flow. This suggests

that the present methodology is practically applicable, and leads to

results that are more accurate than the previous two-dimensional method.

Figure 5.2 also compares the film height with that predicted by Thomas

et al. (1989) where the variations of the velocity across the thickness of

the film were integrated out using a parabolic velocity profile and the

height was explicitly solved by using the iacCormack predictor-corrector

method. The one-dimensional solution seems to predict a smaller film

height than either the present or previous two-dimensional numerical

solution. In addition to neglecting any variation of the velocity across

the thickness of the film, the one-dimensional solution assumes a friction

factor based on the boundary layer thickness. These approximations lead to

results that are somewhat different than the two-dimensional solution

presented here. Looking at Fig. 5.3, it can be noticed that the surface

predicted by the method proposed by Thomas et al. (1989) results' in

penetrations that are much higher than the solution presented here.

Comparing the present solution with the analytical results presented in

section VI, the present film height is found to be lower than that

predicted by the analytical solution. The analytical solution assumes a

uniform velocity profile across the film thickness, which is apparently not

the case in reality. The friction factor used for the final solution,

however, was the average friction factor obtained from the present

numerical solution. The above observations suggest that the free surface

flow of a thin film is two-dimensional in nature and the one-dimensional

results (analytical or numerical) can be used only as an approximation.
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The variation of the friction coefficient and the Nusselt number for

plane flow under zero gravity are presented in Fig. 5.4. The friction

coefficient decreases rapidly close to the entrance and gradually increases

thereafter all the way to the exit. The steep drop near the entrance is

associated with the development of the velocity profile from a uniform

entrance condition to a parabolic configuration downstream. By running the

problem with a parabolic entrance flow, it was found that the rapid drop

near the entrance mostly disappeared, but the friction coefficient after a

short distance from the entrance coincides with the plot presented here.

One may also notice that the friction coefficient is calculated in terms of

the average local velocity, which decreases gradually downstream.

Observing the numerically calculated values of the wall shear stress, it

was found that the shear stress decreases monotonically beginning from the

entrance. Near the entrance, the drop in shear stress is also very rapid.

It levels off as the flow moves downstream. Therefore, the rise in the

friction coefficient is due to the rapid deceleration of fluid velocity

downstream.

The Nusselt number for plane flow under zero gravity also shows a

rapid drop close to the entrance due to the development of the thermal

boundary layer. After a short distance, however, the Nusselt number

becomes nearly constant for the cases of heating and evaporation. As also

seen by previousinvestigators, the Nusselt number for heating is larger

than the Nusselt number for evaporation. A plot of the velocity vectors

for plane flow under zero gravity is shown in Fig. 5.5. It is observed

that the velocity profile is parabolic in nature and the magnitude of the

velocity decreases downstream.
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The results of radial flow under zero gravity is shown in Figs. 5.5

and 5.6 for Rein = 34. It can be seen that for the flow conditions

considered here the film height increases monotonically from the entrance.

However, as demonstrated by Rahman et al. (1989a), the film height may

increase or decrease in radial flow in contrast to plane flow where the

film height always increases. The film height is basically a function of

the inlet Reynolds number. The friction coefficient, in the case of radial

flow, is found to decrease first, attain a minimum, and increase thereafter

all the way to the exit. As discussed for the case of plane flow, the

decrease of the friction coefficient near the entrance is associated with

the development of the velocity profile from a uniform entrance condition.

The rise of the friction coefficient after the minimum in this case is

found to be much more rapid than that in plane flow. This is because the

flow velocity decreases more rapidly due to the spreading of the fluid as

it moves downstream. The Nusselt number for radial flow has basically the

same kind of behavior as in plane flow. The values of the Nusselt number

are different however, particularly in the case of evaporation where there

is a loss of heat from_the free surface. The Vector plot in Fig. 5.5 shows

that in radial flow the velocity decreases more rapidly downstream, while

maintaining a parabolic structure across the film. It can be also noticed

from Fig. 5.5 that the flow in a zero gravity environment is

well-structured and no instability or separation is found to be present in

the flow field.

5.5.2 Film Flows Involving a Hydraulic Jump

1 hydraulic jump is found to be present under some flow conditions

where a film flows along a horizontal or inclined surface under the
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presence of a gravitational body force. Two different flow regimes are

found to be present in this kind of flow: a supercritical flow before the

jump, and _ subcritical flow after the jump. Depending on the Reynolds

number, the Froude number, and the length of the flow domain, the flow may

be only supercritical, only subcritical or mixed in the computational

domain. A mixed flow is the focus of our attention here, since a hydraulic

jump can occur only in that kind of flow

jumps are considered in this section.

demonstrated in Figs. 5.7 and 5.8.

Both plane and radial hydraulic

The results for plane flow are

Figure 5.7 shows a plane hydraulic jump at Re = 355 and Frin = 9.0.

f The Froude number at the outlet is assumed to be 1.0 to simulate a critical

outflow condition. A critical outflow is present when a film moves off of

the plate and experiences a free fall under the action of gravity. If the

plate is extended beyond the computational domain, the outflow is simply

subcritical and an appropriate Froude number needs to be specified.

P

As seen in the figure, the film height increases slowly before the

jump, experiences a rapid rise at the jump front and thereafter decreases

gradually all the way to the exit. A wave-like structure is found to be

present at the commencement of the subcritical regime. This shape was

previously photographed by Francis and [inton (1984) for a hydraulic jump

in a water channel, but could not be captured in previous numerical

investigations. Looking at the velocity vector plot in Fig. 5.8, it can be

noticed that the fluid separates from the plate due to the sudden rise of

the free surface at the jump location, lost of the mainstream flow tries to

orient itself along the free surface since a zero-shear condition exists on
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Z--Z I

>: _.O0_]OE-O1 r,v'_, z2=O.O15m (jump region)

Z--Z 3

> : 2.0000E-02 rn/_. za=O.O8m (subcritical region)

Fig. 5.8 Velocity vectors in plane hydraulic jump (Re=355,Frl,=9)
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that surface. This results in a recirculating flow near the solid wall.

After a distance following the jump, the flow reattaches again to the

surface and eventually develops into a parabolic profile. The flow is also

seen to be parabolic in the supercritical regime before the jump. The

separation of the flow from the solid wall also results in a negative shear

stress near the jump location as seen in the plot of the friction

coefficient in Fig. 5.6. The friction coefficient decreases rapidly near

the entrance due to the development of the flow from a uniform entrance

condition to a parabolic structure. The separation and reattachment points

can be identified from this plot as the locations where the friction

coefficient is equal to zero. After the flow reattaches, the friction

coefficient increases slowly due to the reduction of the flow velocity due

to friction as the fluid moves downstream.

The plots of the Nusselt number are shown in Fig. 5.7 for the cases of

simple heating and evaporation. In both cases, the solid wall was assumed

to be at a uniform temperature higher than the ambient. In both cases,'the

Nusselt number decreases rapidly, comes to a minimum and then increases

further downstream.

A hydraulic jump during the radial spread of fluid along a horizontal

plate is demonstrated in Figs. 5.9 and 5.10, where Rein = 50 and Frin =

11.0. As in the case of a hydraulic jump in plane flow, a critical outflow

condition is assumed. As seen in Fig. 5.9, the supercritical flow is

sustained for a short distance, where the film height increases faster than

the plane flow. At the jump, there is a rapid rise in fluid level, which

is followed by a gradual decrease in the subcritical region. The velocity
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: I.8758E-81 m/s. rt=O.O41m (supercritical region)

r=r2
1

> : 1.7S88E-81 m/s. r2--O.O45m (jump region)

- I

> : 5.0008E-02 m/s, rs=O.O6m (subcritical region)

Fig. 5.10 Velocity vectors in radial hydraulic jump (Reln=355,Frln=ll)
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of the fluid decreases downstream, due to the combined actions of radial

spreading and friction from the solid wall. There is a short separation

region as seen in both vector plots in Fig. 5.10 and the plot of friction

coefficient in Fig. 5.9. The profile is approximately parabolic in both

the supercritical flow before the jump and the subcritical flow following

the reattachment. The rapid drop of the Nusselt number and the friction

coefficient are associated with the rapid flow development near the

entrance. As seen in plane flow, the Nusselt number reaches a minimum in

the separated flow region. The Nusselt number rises slightly after the

flow reattaches to the surface.

5.6 CONCLUSIONS

The results of a new methodology for the computation of the free

surface flow of a thin liquid film is presented. The problems considered

are plane and radial flows involving a hydraulic jump and plane and radial

flows in a zero-gravity environment when no jump can be present. The new

method computes the whole flow field as a single domain problem
- • ,.

irrespective of any regime change in the computational domain. This allows

the determination of the details of the flow field and the friction and

heat transfer behavior around a jump location. It was also found that the

new method yields results that are more accurate than any other existing

method for all of the problems considered here.

In both plane and radial flows where a hydraulic jump is present, it

was found that a distinct supercritical regime is present before the jump

and a subcritical regime exists downstream of it. The very rapid rise in

the fluid levelat the jump location resuits in the separation of the flow
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from the solid wall and the development of a backward circulation. The

flow, however, reattachs to the surface after some downstream distance in

the subcritical region. The back flow was found to be stronger in plane

flow and at higher Reynolds numbers. The location of the separation and

reattachment can be determined from the plot of the friction coefficient,

which is negative in the recirculation region. The Nusselt number was

found to have a minimum in the jump region.

In the case of plane and radial flows in a zero gravity environment,

it was found that the variation of the film thickness is monotonic and no

separation of the flow is present. The friction coefficient decreases

rapidly close to the entrance, attains a minimum and thereafter increases

gradually downstream. The Nusselt number remains almost constant except

for the entrance region, and is higher for heating than for evaporation.
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Section VI

ANALYSIS OF TIE FLUID FLO¥ AND HEAT T_SFEi IN A THIN

LIQUID FILl IN THE PRESENCE _ ABSENCE OF GIIYITY

6.1 SInBtARY

The hydrodynamic and thermal behavior of a thin liquid film flowing

over a solid horizontal surface is analyzed for both plane and radially

spreading flows. The situations where the gravitational force is

completely absent and where it is significant are analyzed separately

and their practical relevance to a micro-gravity environment is

discussed. In the presence of gravity, in addition to Reynolds number,

the Froude number of the film is found to be an important parameter that

determines the supercritical and subcritical flow regimes and any

associated hydraulic jump. A closed-form solution is possible under

some flow situations, whereas others require numerical integration of

ordinary differential equations.

found to compare well with the

solutions.

The approximate analytical results are

available two-dimensional numerical
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6.2. INTIODUCTION

A thin film may be generated either by impingement of a jet on a

solid wall or by discharge of fluid through a slot from a pressurized

container. It may also occur during a melting or condensation process.

Such situations may occur in the Space Shuttle for inflow to a

propellant tank and in the absorber unit of a heat pump absorption

system. The understanding of such flows in a micro-gravity environment

is essential for the optimal design of fluid flow and heat exchange

processes in a space vehicle.

The inviscid flow of a liquid jet impinging on a solid wall is a

classical hydrodynamics problem which is available in textbooks

(Batchelor (1967)). It is concerned with irrotational, incompressible

and inviscid flow, in which the effects of gravity and surface tension

are neglected. One of the major attractions of this type of approach is

that it can be handled using complex potential theory and therefore can

be treated analytically.

In nature, however, viscous effects become important, particularly

when the thickness of the !iquid layer becomes small. Also, gravity

cannot be neglected entirely in most situations. Vatson (1964) analyzed

the fluid mechanics of thin films produced by the impingement of a

liquidjet on a flat horizontal surface under the action of gravity. By
• . - ...

using the boundary layer approximations of the governing transport

equations, analytical solutions using a similarity transformation along

with thePohlhausen integral method were derived. The analysis covered

the regions where the boundary layer thickness is less than the film
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height and where the film is totally engulfed by the boundary layer.

The possibility of a hydraulic jump in such a flow was also anticipated.

However, the analysis was applicable only to the supercritical flow

before the jump. The height of the jump was predicted for any given

location of the jump. The heat transfer counterpart of the impinging

jet problem was considered by Chaudhury (1964). The energy equation was

solved in closed form including the effects of viscous dissipation by

approximating the temperature profile with a fourth-order polynomial.

Nusselt numbers for different values of the Prandtl number were

presented.

The impingement of a liquid jet in a gravity-free environment was

presented by Labus and DeVitt (1978). They included the effects of

surface tension, but entirely neglected the viscous forces. From a

scaling analysis, it was shown that for a large jet Reynolds number, the

flow can be approximated to be inviscid. Numerical solutions of the

governing transport equations were obtained and compared with

experimental measurements. Three distinct flow patterns of the jet were

obtained which were classified in accordance with relative importance of

inertia and surface tension.

In the studies mentioned above, the investigators considered either

inviscid flow or viscous supercritical flow up to the location of the

jump. The fluid flow in the vicinity of the jump or in the subcritical

region following the jump is also important from an engineering point of

view. Ioreover, all of the studies mentioned above are concerned with

a thin film formed by impingement of a liquid jet. The driving
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mechanism of these flows are flow rate and jet diameter which are

characterized by jet Reynolds number. So, the findings in these studies

cannot be applied readily to a situation where the film is formed by

discharge from a pressurized container. This situation was considered

in recent studies by Rahman et al. (1989a, 1989c, 1989d). A systematic

numerical study of two-dimensional fluid flow and heat transfer in a

thin liquid film in both plane and radially spreading flows was

performed. The studies covered both zero and normal gravity

environments. In the absence of gravity, no jump was found and the flow

remained supercritical in the entire domain. In the presence of

gravity, a jump was found under some flow conditions. In all of these

studies, the flow field was computed numerically using a boundary-fitted

coordinate system where the irregular free surface of the film was taken

as one of the boundaries of the computation domain. The inertial,

viscous and pressure forces were identified to be dominant and the

surface tension was found to be negligible in most regions. The

computational methodology presented by Rahman et al. (1989a and 1989d)

(described in sections III and IV of this report) is termed the

'pressure optimization method' where the shape of the free surface was

represented by an algebraic equation with two or more arbitrary

constants. The constants were optimized using an exhaustive search

which minimized the difference between the computed free surface and

ambient pressures. The method was found to be robust and was extremely

satisfactory for zero-gravity flows. However, when a jump was present

in the computation domain, the pressure optimization method was unable

to compute the jump as a single-domain problem. The subcritical and

supercritical flows were computed separately and were matched at the
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jump interface preserving the conservation of mass, momentum and energy.

The two-dimensional numerical method presented by Rahman et al.

(1989c) (described in section V of this report) is termed 'porous wall

method'. In this method, the free surface was assumed to be a permeable

wall where fluid particles could cross this boundary depending on the

difference in fluid and ambient pressures. The shape of the surface was

improved by successive iterations until the free surface conformed to a

streamline where no penetration occurred. This method proved to be

successful in handling the regions before and after the jump as a

single°domain problem. The details of the flow structure in the

vicinity of the jump were presented along with values of the skin

friction and heat transfer coefficients.

Even though the complete numerical solution for the flow field and

heat transfer coefficient are available to us, the need for a simple

systematic, analytic method to describe the flow is inevitable. The

numerical results are limited to the flow parameters used for the

computation, and cannot be extended in general, ioreover, an analytical

expression is easier to use and implement in addition to the

understanding of the limiting behavior of the flow. The present work is

intended to analyze both zero-gravity flows and the flows where gravity

is significant ,. The application of these results in a micro-gravity

situation will be examined. Unlike previous analytical studies, it will

cover both supercritical and subcritical regions and the jump connecting

the two domains. In addition to analyzing the flow field, the heat

transfer will be studied.
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6.3. EQUATIONS OF lOTION

The schematic of the problem under consideration is shown in Fig.

A thin liquid film is flowing adjacent to solid heated wall. Two6.1.

classes of flows are considered here.

(a) Plane flow: where the film moves in a two-dimensional fashion

along a plane horizontal wall.

(b) Axisyaetric radial flow: where the liquid is introduced at the

center of a circular horizontal plate and spreads out radially.

The z(r) axis is directed along the longitudinal (radial)

direction, and y-axis is directed normal to the plate. The velocity

components in these two directions are w and v, respectively. The

height of the free surface from the solid wall is denoted by 6 which

varies with the longitudinal (radial) location of the plate.

The equations governing the conservation of mass, momentum and

energy for an incompressible constant property flow are given by

-4

v • v = o (6.1)

--4

DV 1 Vp + vV2 V + g (6.2)

k

DT"
]_ a V2T (6.3)

Here we have also assumed that heat generation due to viscous

dissipation and pressure work are negligible, and there is no generation
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Fig. 6.1. Schematic of f_hephysical problem
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of heat or mass.

as

-4

The velocity vector V can be resolved into components

-4 -4 -4

V = wk + vj

The vectorial representation used in equations (6.1-6.3) is easier to

handle since it can be readily transformed to Cartesian or cylindrical

components as needed. The boundary conditions in component form are

given by

at y = O: v = w = 0

for isothermal wall

for constant flux wall

(8.4)

d6 v
at y = 6: _ = _, P = Pe' re = 0

T = Tsat, for evaporation

qe = 0, for adiabatic condition

(s.s)

at z = 0 or r = r. :
in

at z = L or r = rout:

w = liin, T = Tin

OT= -pg, _ = 0

Ow

{ _ = O, for zero gravity
F-r Frou t, for non-zero gravity

(s.7)

On the free surface, both streamline and stress-free conditions

have to be satisfied. The balance of normal stresses, in general,
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relate fluid pressure to the ambient pressure via surface tension and

other stresses. From a scaling analysis, it can be shown that (see

Rahman et al. (1989c)), for a reasonably large Veber number and flow

rate that is typical for these flows, these stress terms are found to be

an order of magnitude lower than the pressure. So, the surface tension

can be assumed to be negligible in most regions of the flow leading to

the p = Pe condition on the free surface.

Both plane and radial flows described above will be solved for zero

and normal gravity situations. In the following two sections, we will

analyze the flow using uniform and parabolic velocity distributions,

respectively. The former is more common in fluid flow literature

concerning a hydraulic jump or shock wave and will be carried out in

details. The latter section will improve on the analysis by using a

parabolic velocity distribution across the film, which is more

appropriate for laminar thin film flow.

6.4

... . • - . . .... •

ANALYSIS OF FLSV USING ONe_,-DIIENSIONAL UNI-FOU VELOCITY

Ve first consider the situation where the velocity variation across

the thickness of the film is neglected, and the film is assumed to

propagate downstrea_a with its uniform average velocity. Let V be the

average velocity of the film in the longitudinal (radial) direction of

the plate and q be the volumetric flow rate. In the case of plane flow,

Q is the volume flow rate per unit width. The continuity equation (6.1)

can be written as

q = (2z r) ] _ (6.8)
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where I = _ O, for plane system
1, for radial systemt

Integrating eqn. (6.2) across the thickness of the film, expressing

the resistance from the solid wall in terms of friction coefficient and

substituting eqn. (6.8) results in

d V2 cf V2 (6.9)

This momentum equation must

determine the flow field, and will

subsections.

be solved along with eqn. (6.8) to

be carried out in the following

6.4.1 Flow Under Zero Gravity

For a steady flow under zero gravity, the governing equations (6.8

and 6.9) reduce to

q = (2rr) 1 _ = constant (6.1o)

the

dV cf V2 (6.11)
v _ = - ,2---_

Eliminating 6 from eqns. (6.10 and 6.11) gives

cf. (2rr)l drV-2dV--

Integrating this equation assuming a constant cf and substituting

conditions at one location of the flow (i.e., at r = rin, V = Win

214



(

f

I

i'

and 6 = 6in ) yields the solution in the form

cf r

W i - _-- (l + l)b 6in rin 1

_. - cf rin = _'_ ( _ )

In 1 - 2- (l + i) _in

Solving for 6 results in the following relation

6 r r.

i_n = A--+ (i- A) ( _!£)rin

cf tin (6.14)
where t = 2- (I + 1)_in

From equation (6.13) we may express the distribution of film height for

plane and radial flows.

For plane flow (1 = 0), the equation simplifies to

cf z

: 1 +2- (6.15)

This indicates that for a constant friction coefficient the film height

increases linearly with distance. This increase in film height is

because of the decreasein flow velocity due to the resistance from the

wall. Ve may also notice that for inviscid flow when no resistance is

exerted by the solid wall, the film height remains the same at all

downstream locations beginning from the entrance.

l .
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In real flow situations, however, the fr_ction .coefficient varies

along the plate. Usually, near the entrance the friction coefficient is

greater due to the rapid changes in the velocity profile as the boundary

layer develops beginning from the entrance plane. A good estimate of

the friction coefficient can be made using the Blasius solution (see

Kays and Crawford (1980)) for forced convective boundary layer adjacent

to a plate. This results in

0.664 for plane flow

Cf = ,

(6.16a)

0.664 for radial flow (6.16b)
and cf =

W (r-tin)V

However, unlike any other external flow, in a thin film the boundary

layer thickness is frequently of the order of the film height. So,

after some distance downstream, the viscous effects propagate all the

way to the free surface. Then cf can be better estimated from the

equation presented in a later section of this paper (equation 6.46).

The location where one should switch over from one formulation to the

other may be estimated from the solution of the boundary layer thickness

for forced convection. The thickness of the momentum boundary layer is

given by
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and

6B : 5.0 1_ , for plane flow

6B = 5.0 ]_n) , for radial flow

As shown by Thomas et al. (1989), the two friction factor estimates

yield the same value at 6 = 1.81 6B. So, for continuity, one may use

equation (6.16) for 6/6 B > 1.81 and equation (6.46) for 6/6 B < 1.81.

The one-dimensional analytical solution with the friction

coefficient described above has "been compared with the numerical

solution of Rahman et al. (1989a) in Fig. 6.2 for Re = 12.5, L = 0.03 m

and 6in : 0.000595 m for plane flow. Similar to the analytical

solution, a uniform inlet velocity has been assumed for the numerical

solution. The predicted film height distribution is found to be

somewhat higher than the two-dimensional numerical solution. I test run

with the friction coefficient reported in hhman et al. (1989a) yielded

a solution almost coincident with the numerical film height. So, the

discrepancy is primarily due to approximations inherent with the

estimation of the friction coefficient. The Blasius solution is

perfectly valid for boundary layer flow where the free stream extends

through a large distance and no free surface is present. However, the

comparison is reasonable considering the approximations inherent in the

simple analytical formulation.

A plot of equation (6.13) for radial flow under zero gravity is

presented in Fig. 6.3 for different values of A. For A : 0.0, which

217



I •

I
\\

\\\

\ ii

'I

-+ ili+++....
I I I I I

0 CO +4D "m" c'4

Ut+o/.+o

-o <_

--,j

-5
°__

- _

__1

• _ _

._'
_ ..c

°

o _

218



[

{

I

%

\

\

(D
• II

<

%

\

\\

%

%

i
!

UD ,<D

o

%

%

%

\

%

%

\

%

&

\

\
%

%

\

\

\

\
%

%

%

%

%

%

\

\

\

\

\

\

\

\

\

\

%

'%'-"

219

/
/
/

uO

-_0

_uO
%..--

W"--

>.
-4---
Om

>

E
O%

o_
N

i_
(D

C

O

O

E
i_

_o
-+-.

c-
CD

_N

c-

E
B
ou

[3
.o_
>..
[3
c-
<_

_O

h_



corresponds to inviscid flow, the film height monotonically decreases

with radial distance. This is quite expected since, in the absence of

any friction, the velocity of fluid particles will remain constant.

Therefore, the film height has to decrease with radius as more and more

area becomes available to the flow. In this plot we also notice that

when friction is present (A > 0), the film height may increase or

decrease depending on the Value of A and the radial location. Also, for

a given radial location the value of the film height is more for a

larger value of A, since A quantifies the frictional resistance compared

to the inertial forces. For A = 0.2 and 0.4, the film height decreases

first, attains a minimum and then increases further downstream. The

location for minimum 6 can be determined by differentiating equation

(6.13) which gives

(i: _- (6.17)FT. )for min 6 ( )1/2
in

From eqn. (6.17) we find that a minimum exists if A < 1/2. Otherwise,

the film height increases continuously from the entrance as seen in

plots corresponding to A > 0.5. At A = 1.0, the film height increases

linearly with radius.

The analytical solution for a particular case of Rein = 404, 6in =

0.005 m, rin = 0.05 m and rou t = 0.2 m is shown in Fig. 6.2 where it is

compared to the two-dimensional numerical solution given by Rahman et
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al. (1989a). Here, we have also used the friction coefficient estimated

by equations (6.16) and (6.46). The results are very close except for

the fact that the analytical solution shows a minimum in the flow

domain. The minimum is indeed present as verified from the value of A.

The numerical solution could not accommodate this behavior since a

continuous hyperbolic curve was assumed to represent the free surface.

6.4.2 Flow in the presence of gravity

Vhen the gravitational body force is significant compared to other

existing forces, its effect should be included in the analysis. Unlike

a regular forced or natural convection flow in outer space, the effect

of gravity, even small, may be significant in a thin film flow since two

potential flow regimes, namely supercritical and subcritical may be

encountered. These regimes are characterized by the Froude number. The

transition of the flow from supercritical to subcritical is analogous to

the transition from supersonic to subsonic flow in gas dynamics, where

the lach number determines which regime is present. The analysis

presented below uses the methodology commonly followed in the analysis

of high speed flow with friction (i.e., Fanno flow). The application of

these ideas to a thin film flow is entirely new and it enabled us to

combine both flow regimes (supercritical and subcritical) in a single

analysis which was not possible by previous investigators, lost

previous analytical studies assumed the film height to remain constant

in the subcritical region. Expressing eqns. (6.8) and (6.9) in terms of

the Froude number results in

q : (2rr) 2 _ Fr o (6.19)
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d [6 ( I Fr2 cf+-_-)] =- -_Zr 2

These equations will be solved for plane and radial flows in the

following subsections.

(a) Plane Flow

For plane flow J = O. Then eqns. (6.19) and (6.20) can be combined

by eliminating the film height and non-dimensionalized assuming cf to be

locally uniform to give the equation

(1 - Fr 2) _-fdFr = _9 Fr 11/3

where

z (6.22)
R1 = 6_.. I/3Re2/3

cf (2/g)

Integration of equation (6.21) gives

I 8/3 I 2/3
I-_ Fr- _ Fr- = - R1 + c

To evaluate the integration constant, the Froude number must be

specified at one location in the flow. Upon examining equation (6.21)

we notice that the equation is singular at Fr = I, so a critical flow

situation is present at that location. This is analogous to a lach

number of unity in a compressible flow. Let this critical location be

*

denoted by R1 . Then the solution can be written as
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* i _ Fr-2/3 i 8/3 (6.23)R1 - R1 _[ + -= - I-_ Fr-

Equation (6.23) is a double-valued function as shown (in circles)

in Fig. 6.4. The two branches of the function represent subcritical or

supercritical flows where the Froude number is less than or greater than

unity, respectively.

Since two solutions exist at any location, the possibility of a

sudden jump from supercritical to subcritical flow exists. The opposite

is not true since that would violate the second law of thermodynamics.

The height of the film before and after the jump can be related by the

conservation of mass and momentum across the jump. This is given by

62

rl=½ [ i÷8 i]

where subscript I indicates conditions before the jump and subscript 2

indicates conditions after the jump.

In Fig. 6.4, it can be observed that both subcritical and

supercritical flows move towards the critical condition. In the

supercritical regime, the Froude number decreases downstream, whereas in

the subcritical regime it increases with distance. Since the Froude

number is inversely related to the film height, the film height is

expected to increase downstream in the supercritical region and decrease

downstream in the subcritical region. I flow starting with Fr<l will

follow the subcritical curve all the way to the exit. However, a flow
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starting with Fr>l may follow the supercritical curve all the way to the

exit or may encounter a jump and transform to subcritical flow inside

the region under consideration. The location of the jump is determined

by the downstream condition of the flow.

(b) kxisymmetric Radial Flow

For radial flow, I = 1, eqns. (6.16 and 6.17) may be transformed

into the following form

dFr = 9 Frll/3 _(1 - Fr 2) _-f Fr(2 + Fr 2) (6.25)
2 R1

where

RI= r (6.26)
8 (2/g)i/3Re2/3

Analogous to plane flow, here the radial distance has been

non-dimensionalized using the local Reynolds number and friction

coefficient. The variation of friction coefficient with radial distance

has been assumed to be negligible. . A closed-form solution of equation

(6.25) is notpossible, so anumerical integration was performed using

the Euler method. It can be noticed that the equation is singular at Fr

= 1. Therefore, the critic_i condition cannot be directly applied as a

boundary condition in the numerical solution. To avoid this

singularity, the equation can be expanded around the singular point and

the solution can be found at a short distance from the singular point
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from the lowest-order expansion. The numerical integration then can be

carried out beginning from a short distance away from the singular

point, where the solution is already known. The solution is shown in

Fig. 6.4.

It should be noted that the critical radius, R1 , appears as a

parameter. For a given flow rate and inlet Froude number, the value of

_1 depends on the inlet radius. A large _1 indicates that the flow

starts up at a larger radial distance, where the effect of curvature is
,

smaller. This is quite evident from the plot since the result for R1 =

100 coincides with the solution for the plane flow. The double-valued

nature of the solution is also present in radial flow which also

indicates the possibility of a hydraulic jump. The film height before

and after the radial jump can be related by the same equation as for

plane flow (equation 6.24).

6.4.3 Characteristic Behavior of the Flow

Since the equations of transport for the free surface flow of a

thin liquid film are somewhat similar to those for one-dimensional

compressible flow, it may be useful to analyze the characteristic

behavior of the flow.

The conservation equations in its time-dependent form can be

written as

_U 1 _ r _
7 ( z)--u

2.2.6



where

0

and H = ]_rw/p I

where r w is the surface shear stress. These are two first-order partial

differential equations in t and r with two dependent variables, 6 and V.

These two equations may be linearized and written in the following

characteristic form:

Rt + C Rx = S

where

R= 6
= Riemann invariants

= Vave speed

It can be seen that the first invariant always propagates downstream

(i.e., C > 0). The second invariant, however, propagates downstream for

supercritical flow (Fr = Vl/v_l > 1) and propagates upstream for

subcritical flow (Fr < 1). This implies that both V and 6 must be
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prescribed upstream for solving supercritical flows while only one is

prescribed upstream and one downstream for solving subcritical flows.

6.4.4 Application of Results to _icro-Gravity

The zero-gravity thin film flow considered here can be attained

only in a complete absence of the gravitational body force. Bowever, in

orbit the gravity is very small, but not precisely zero. Therefore, the

range of applicability of the results needs to be investigated. Looking

at plane flow results under zero gravity we notice that

cf
6- z + 6in

This suggests a monotonic increase in the film height so long as cf

remains positive. The flow decelerates due to friction and consequently

the film height increases. Since the major driving mechanism for this

flow is inertia, a film introduced with a finite velocity becomes very.

slow after traveling a certain distance.

Vhen investigating the expression for the Froude number, it can be

noticed that even for a very small gravity force, where the inlet Froude

number tends to infinity, the Froude number may become on the order of

unity after some distance, since both the deceleration of flow and the

increase of film height contribute to reducing the Froude number. The

situation here is analogous to hypersonic flow, which in the presence of

friction rapidly ceases to be hypersonic after traveling some distance.

Therefore, in a microgravity situation, the order of magnitude of the
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local Froude number is very important. Vhen the Froude number is

extremely large, like near the entrance, the zero gravity results may be

applicable. However, away from the entrance, one should resort to the

normal gravity results presented here and eventually a hydraulic jump

must be encountered.

6.5 ANALYSIS OF FLOV AND HEAT TIANSFE| USING PARABOLIC VELOCITY

DIST1HBUTIO_

The one-dimensional analysis presented in

revealed many interesting features of the flow.

the previous section

However) the velocity

profile in reality is two-dimensional in nature because of the no-slip

condition at the solid wall. As demonstrated by Rahman et al. (1989a),

the velocity profile is approximately parabolic in nature in most

regions of the flow. The temperature profile may also become parabolic

after the thermal boundary layer develops.

Ve assume the velocity component, w, and temperature, T, to have

the following general form where the boundary condition at the solid

wall and free surface are satisfied.

W
: (i- (6.27)

T

• I+ + 2 (6.28)
"'_ T

where _ is the dimensionless coordinate across the thickness of the

film. The constants B and C will be evaluated later in this section for

229



different thermal conditions considered here.

Once the velocity and temperature profiles are fixed, the other

flow quantities can be readily calculated and are given as follows

r w = _-_ (6.29)

KBT
W

qw - _ (6.30)

KBT

qe = --b"-w(B + 2C) (6.31)

Te : Tw (1 + B + C) (6.32)

Tb : Tw (1 + 5//8 B + 9/20 C) (6.33)

In a thin film flow, the velocity across the thickness of the film

is much smaller than the velocity along the plate. Scaling the governing

equations (6.1-6.3) using the condition v << w gives

1 0 , , Ov

7 _-_ (rJw) + _7 = 0 (6.34)

O_,' + Ow = 1 82w37 v_ -°-2 + _ (6 35)
. p or _-_
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OT gr 02T

w _-f * v_ = o _ (6.37)

Bere J = 0 indicates plane /toy and J = 1 denotes radial flow.

Integrating equation (6.36) we get,

P = Pe + pg (&Y) (6.38)

where Pe is the pressure at the edge of the free surface. This

indicates that pressure across the thickness of the film is hydrostatic

in nature, tlso, at zero gravity, p = Pe" In the external flow over a

flat surface, the ambient pressure usually remains constant. So, in a

gravity-free environment, the static pressure is expected to remain

constant everywhere in the flow field.

6.5.1 Plane Flow Under Zero Gravity

For plane flow under zero gravity equations (6.34) and (6.35) can

be integrated from 0 to 6 using the velocity profile given in equation

(6.27) and the no-slip condition at the solid wall and zero-shear

condition at the free surface. After using the definition of Reynolds

number, it results in the relationship

d,5 2.5
: (6.39)

Integrating this equation, one _!>_.;,.ins



For plane flow, the Reynolds number remains constant. Therefore,

the film height Increases linearly beginning from the entrance location.

Ve also notice that in the limiting case of Re _ a, _ = _in everywhere

in the flow field. This is quite expected since in an inviscid plane

flow, the film height remains constant.

Figure 6.2 shows a comparison of this solution with previous

numerical results of Rahman et al. (1989a). The analytical solution

tends to predict a somewhat higher film height than the numerical

solution, but lower than the solution predicted by assuming a uniform

one-dimensional velocity distribution. The assumption of a parabolic

velocity profile, even though not exact everywhere in the flow field,

produces a reasonable estimate of the film height distribution.

6.5.2 Radial Flow Under Zero Gravity

For radial flow under zero gravity, the integrated equation for the

conservation of momentum can be written as

d_ 2.5 6 (6.41)_:_ r

Analogous to the plane flow case, we have used the continuity

equation, the boundary conditions at the solid wall and free surface and

the definition of Reynolds number to arrive at this relationship. Note

that this equa_i,_n reduc_?s t¢_ the plane fl_w equation as r -_ _. _'e carl

also observe :.!iat ;IF _::;_t bc i)_sitive ,)r nv.g .... Iv_.'. S,_, the film height.

:::av increase or dccr,.'a>:, _ {:_ the cast_ of radial fl,,_,,

plane f]o_, _'h_ere a ]i,_,_ar increase is eT_count_'red.

in c()ii{ [;tst I_)

The frictional
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resistance at the solid wall reduces the flow velocity and consequently

tends to increase the height. _owever, at the same time, the flow is

spreading radially with more area available for the flow as the radius

increases. This same behavior was seen in the discussion of

one-dimensional analysis (Fig. 6.3), where the parameter 't' determined

the variation of film height downstream from the entrance. 'A' is a

function of inlet Reynolds number along with inlet height and radius.

Note also that the Reynolds number does not remain constant in radial

flows and changes with location.

Integrating eqn. (6.41) gives

• 2 5 (r 3 rin 3)
5 _ rln + " - (6.42)
_. r 3 Re. rh. r.

in in in in

The location of the minimum film height may be calculated by

differentiating equation (6.42) with respect to r. This results in

[ 3Reinhin __ 5h ]1/3(r)for min 6 = rin 5 ( • - 6Re. " )
in in in

Ve can also notice that the minimum will exist when

Re. h.
in in < 5
r. -
in

The results of the anz_lvtica] s¢_tu_i,,u f,_r radial fl,_ u_{[,,': z,,'r_

gravity is also compared wit, h previous nu>vrtcal results of Rah_n:_ e_

"."E
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al. (1989a) in Fig. 6.2. In this case, we can see a minimum inside the

!

flow domain confirming the observation from the one-dimensional

analytical solution using the uniform the velocity profile. Both

analytical solutions are close to each other whereas the numerical

solution is slightly higher in most parts of the flow.

6.5.3 Plan_ Flow in the Presence of Gravity

For plane flow where the gravitational body force term is retained,

the governing equations of motion (6.34-6.35), can be integrated across

the thickness of the film using equation (6.38), the boundary

conditions, and the definition of Reynolds number, and can be

transformed to the equation

(_ _ Fr 2) dFr 15 Frll/3 (6.44)

where

_ere the radial coordinate R is normalized in terms of Reynolds number.

Note that the definition of R is very similar to the normalized radius

R1 used in the one dimensiona] analysis using the uniform velocity

except that the friction coefficient cf appears in R1 whereas it does

m)t appear in R. From equation (6.29), the friction coefficient can be

ca:;i]v ra_:u];,._,'d t,_ b,!
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6
cf -- I_ . (6.46)

This friction coefficient is correct when the velocity profile is

parabolic across the thickness of the film, which obviously assumes that

viscous effects are extended all the way to the free surface. When this

definition of cf is assumed, R1 becomes the same as R. In the present

investigation we have tried to keep the one-dimensional analysis using

the uniform velocity somewhat more general where any known distribution

of the friction coefficient may be used.

From equation (6.44) it can be noticed that a critical condition in

the flow occurs at Fr = 0.913. Note that this value of Froude number is

different from the conventional critical Froude number of Fr = 1, which

is strictly valid for a one-dimensional flat velocity distribution. The

value of Froude number of 0.913 is therefore the "weighted" value for

the parabolic profile. Integrating equation (6.44) with a boundary

condition of (R = R at Fr = 0.913) we can obtain the solution as

1.195 + _ Fr -2/3
5 8/3 *
1-_ Fr- = 3.75 (R- R ) (6.47)

A plot of this equation is shown in Fig. 6.5 (as circles).

the one-dimensional analysis, the solution is also

double valued in nature. The two stems of

supercritica] and subcritic;_l flow regimes. Tile

tnalogous to

found here to be

the curve denote the

possibility of a

hydraulic jump a]s,'_ cxist, s here, which basically depends on the incoming

}'r_)ud(e number, ]_ngth _f the, pla_,_.: and flow c(._nditi,c,n ;_t t,h(, oul.}_e',..

1he jump may be present only _h_,n the flow initially is

Z.!2)

,';upercritical.
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The ratio of the film height before and after the jump can be determined

I

from a mass and momentum balance at the jump, which, in this case, turns

out to be

,21i 2 ]_1 : _i 1 + 9.6 Fr 1 - 1 (6.48)

where the subscript 1 indicates conditions before the jump and the

subscript 2 indicates conditions after the jump. In comparing this

relationship with equation (6.24) for uniform flow only the coefficient

within the radical changes for the parabolic profile.

Plane flow in the presence of gravity is characterized by two

independent dimensionless groups, namely, the Froude number and Reynolds

number. Since the Reynolds number is lumped with other parameters in

the definition of R, to see its effects more clearly, the plane flow

solution is plotted again in Fig. 6.6 for different values of Reynolds

* v2/g)l/3number using (z - z )/( as the abscissa. Note that for a small

value of Reynolds number, the supercritical solution cannot be sustained

for a large length of the plate. On the other hand, for the same

Reynolds number, the subcritical solution may be present for any length

of the plate. Also, the length for which a supercritical solution may

be present increases with Reynolds number. So, for a given length of

the plate and inlet Froude number, the length of the supercriticat flo_

regime is directly dependent ,_n the Reynolds 1_umber. For ;_ ::_rg_

Reynolds number, the flow mxv be supercritical in the _2I/{ iUt _ #i,_"?:Lill.

_ith a decre_st_ of the Reynolds number, ;t jump is expect_d _,_ a;_!,ear
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with a subcritical regime, is the Reynolds.number is reduced further,

the jump may move all the way to the inlet, resulting in completely

subcritical flow.

The figure also shows that if the flow enters the control volume

with a higher Froude number, it may remain supercritical for a larger

distance. The effect of gravity can be also analyzed. For a given flow

rate and Froude number, (z - z ) is inversely proportional to (g)i/3

So, for a smaller value of g, the length of the supercritical flow

regime is expected to be longer. In the limiting case of zero gravity,

a subcritical flow regime is not possible and the flow becomes entirely

supercritical.

The predicted film height is compared with the previous numerical

solution of Rahman et al. (1989a) for Re = 89, Frin = 8.6, Frou t = 1.0

and L = 0.14 m in Fig. 6.7. The height in the supercritical region is

slightly over-predicted, whereas in the subcritical region, the height

becomes flatter than the numerical solution. In the numerical

computation of Rahman et al. (1989a), a critical outflow condition is

assumed to be present at the exit, whereas in the analytical solution

this condition was not imposed.

6.5.4 Radial Flow in the Presence of Gravity

For radial flo_' in the presence _f gravity, tile equations of motion

(_.3.1-_'_..,o) can be c,,:pressed as,
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 r21 :dFr5Fr 6 3 r3+ Fr11/3 . (6.49)

r (6.50)

where R = [_]1/3 Re 5/3

Here, we can also notice that a critical condition is arrived at Fr

= 0.913. This confirms that a critical condition in the flow depends on

the velocity profile used for the analysis. The double-valued nature of

the solution and the possibility of a hydraulic jump still exists. The

solution is presented in Fig. 6.5 for different values of R tnalogous

to plane flow, the critical radius K corresponds to Fr = 0.913. As

discussed before, a smaller value of R indicates that the flow starts

up at a smaller radius where the effects of curvature are important.

This fact is quite evident in the figure. The curve for R = 100

coincides with the plane flow solution. At this situation, the effects

of curvature is negligible, tlso, at R = 0.5 and 1, the Froude number

attains a minimum in the subcritical regime. This indicates that if a

jump happens before that radial location, the film height may still

increase in the subcritical region, attain a maximum and then diminish

further downstream. This phenomenon is not present in plane flow and at

$

flows with large values of R , where the film height decreases

monotonically in the subcritical region. It can also be noticed that

equation (6.49) reduces to equation (6.44) as R _ ®. So, the plane fio_

may be treated as a limiting case of radial flo_ where R - _.

6.5.5 h:_alvsis ,,f }[eat Transfer

The heat tr:tnsfer behavior can be so]red by integrating equati,,r_
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(6.37) with the

profile.

substitution of equation (6.28) for the temperature

Different thermal boundary conditions are considered in the present

study. They are isothermal and uniform flux conditions at the solid

wall and evaporation and pure heating without evaporation on the free

surface. The heat transfer coefficient for these eases are defined as

h

qw / (Tw - Tb)' for heating
qw / (T w Tsat) , for evaporation

A general expression for the Nusselt number can be evaluated from

equations (6.30-6.33).

Nu =

B

, for heating

B

B + C , for evaporation

A complete analytical solution is possible for the case of heating,

when the free surface is assumed to be adiabatic in nature. For this

case, Nu = 2.5 for both isothermal and uniform flux wall conditions.

Note that Nu is a function of heat, transfer coefficient and film

heigilt, both of which change with location on the plate. A comparison

o_' thJ_ rcsuJt _ith th(' i_rcvi._J:; rlu;_eri(:al _;_]_tion of R.a.hman eL a].

(i!)89d) is sho_'n in Fig. 6.8. For radial flow at zero _ravity (lie =
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404, Pr = 7, r.
In

1000 W/m2), the numerical Nusselt number starts at a higher value

then approaches an asymptotic limit as the flow moves downstream.

limiting value is somewhat lower that the analytical prediction.

= 0.05 m, rou t = 0.2 m, 6in_ 0.005 m, Tin = 20°C, qw =

and

This

This

indicates that the true temperature profile is somewhat flatter than the

parabola assumed here. For plane flow in the presence of gravity (Re =

89, Frzn. = 8.6, Frou t = 1.0, Pr = 7, L = 0.14 m, T.ln = 20°C' qw = 1000

W/m2), the subcritical and supercritical heat transfer coefficients

approach the analytically predicted value as the flow moves downstream

with the development of the temperature profile.

For an

surface, an

integrating

profile and boundary conditions.

isothermally heated vall with evaporation on the free

expression for the Nusselt number can be derived by

equation (6.37) using equation (6.28) for the temperature

The result is

* Co J(z)Nu = 1 -

W

(6.53)

80 a f z dz
where _(z)- 7 Q 0 _- (6.54)

ltere CO is the value of C at one location in the flow, where integration

sh_uld star_..

at

1,_(' cxp;(?SSioIlS for ,'_1_ ar_' LI_J_'

gravity is finite and infinitesimally small.

b,._th f,,r the cases _'i_e,.e t.h,,:

The actua] heat transfer
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coefficient, however, will be

!

distributions in the film height.

different because of different

6.6 CONCLUSIONS

A systematic analysis of thin film flows in a zero gravity and

non-zero gravity environment is performed and their implications in a

real flow probiem under micro-gravity conditions is discussed. The

analysis is carried out in two parts. First, the hydrodynamics of the

flow is studied for uniform one-dimensional velocity with any given

friction factor. Next, the flow fieid and heat transfer coefficient are

determined using the Pohlhausen integral method.

It is found that in the complete absence of gravity, the flow is

supercritical, where even for a relatively small, but not negligible

gravity, two potential flow regimes - supereritical and subcritical may

be present. The two regimes are separated by a jump where large changes

of film height take place. In the presence of friction, both

supercritical and subcritical flows move towards a critical condition.

The flow regime is characterized by the Froude number, whereas the

Reynolds number indicates the relative importance of the inertial and

viscous effects.

For plane flow, it is found that in the absence of gravity, the

film height increases linearly with distance, _')::?n gravity is pr_s_nt,

the film height increases monotoni<ally in the s_lpercritical I_L_i(_n,

<:ncounters a j_ap :tad then decrea:_,:s furti_L,: d_,_x_,:r,_a:_, i:, l i',_

subcritical region. The heat transfer cc_:ffi_zienl, in thas sit_Ja_i,_n is
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characterized by Nu = 2.5, both for isothermal and

walls with no evaporation from the free surface.

uniformly heated

For radial flow it is found that in addition to the Froude and

Reynolds numbers, the inlet radius is an important parameter, which

carries the effects of curvature in the flow. At large values of the

inlet radius, a plane flow situation is approached. Here, in the

presence of gravity, the film height may increase or decrease depending

on the flow rate, radial location and Froude number. The comparison of

the results with previous numerical solutions shows reasonably good

promise that the analytical method presented here can act as a useful

tool to easily obtain approximate results for any given flow situation

in a normal gravity or microgravity environment.
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Section VII

CONPAILISON OF THEORETICAL PREDICTION AND EXPEIAIENTAL DATA

7.1 SUmUlY

The theoretical models developed in earlier sections are improved and

a systematic procedure to compute the free surface flow of a thin liquid

film is suggested. The solutions for axisy_etric radial flow on a

stationary horizontal disk and that when the disk is rotating around its

axis are presented. The theoretical predictions are compared with the

experimental data presented in Section II of this report. The details of

the flow field are also presented for the stationary disk, which shows flow

separation near the location of the jump. The effects of surface tension

are found to be important near the outer edge of the disk where the fluid

experiences a free fall. It other locations, the surface tension is

negligible. For a rotating disk, the frictional resistance in the angular

direction is found to be as important as that in the radial direction.
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7.2 INTRODUCTION

J

The appropriate design of a rotating absorber unit for a heat pump, a

rotating condenser or evaporator, or the proper method of spin coating

deposition on a metal surface all require an understanding of thin film

flows over a horizontal rotating surface. Moreover, the impingement of a

liquid jet on a solid wall that leads to the formation of a thin film is

found in many engineering devices. These free surface flows are sometimes

associated with a hydraulic jump where two different flow regimes are

encountered at the upstream and downstream sides of the jump. The flow

structure around a hydraulic jump is usually complicated in nature, the

understanding of which is essential from both theoretical and practical

points of view.

The radial spreading of a liquid jet impinging on a flat horizontal

surface was studied by Watson (1964). Both analytical and experimental

studies of laminar and turbulent flows were made. A hydraulic jump was

found to be present under some flow conditions. The analysis covered the

supercritical region before the jump where four different flow regimes were

identified and analyzed using the Pohlhausen integral method and a

similarity transformation. In the subcritical region, the film height was

assumed to be constant. For a given location of the jump, the subcritical

height could be also predicted.

The heat transfer to a thin film formed by an impinging liquid jet was

considered by Chaudhury (1964). His analysis basically followed the ideas

introduced by Watson (1964) except that the energy equation was solved. In

the region away from the impingement location where a similarity solution
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of the momentum equation was possible, the energy equation was solved in a

closed form indluding the effects of viscous dissipation. An approximate

solution for the simultaneousiy developing hydrodynamic and thermal

boundary layers were also obtained using the integral method where the

temperature profile was approximated by a fourth-order polynomial. Nusselt

numbers for different values of the Prandtl number were presented for both

the regions.

The laminar flow of a thin film adjacent to a horizontal rotating

surface was studied by Rauscher et al. (1973). An asymptotic expansion

technique was used to develop an approximate solution where the radial

spread of fluid was perturbed to determine the effects of convection,

Coriolis

tension.

discussed.

acceleration, radial diffusion, surface curvature and surface

The physical significance of these higher-order effects were also

The transient behavior of the film when the rotation is started from

an initial stationary condition was examined by Higgins (1986). Both low

and high Reynolds number flows were considered. An asymptotic expansion

technique was used to develop analytical solutions valid for short and long

time scales. His results were valid only when the thickness of the

boundary layer is small compared to that of the film. The thin film flow

of a non-Newtonian fluid adjacent to a rotating surface was considered in

the study of _atsumoto et al. (1982). An integral method was used where

the velocity profile _cross the thick_ess of the film was approximated by ;_

polynomial.
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The condensation of a saturated vapor onto a rotating horizontal
o

surface was investigated by Sparrow and Gregg (1959). The governing

momentum and energy equations were simplified to a set of ordinary

differential equations by using a similarity transformation. The equations

were then integrated numerically to predict the condensate layer thickness

and heat transfer coefficient along with the temperature and velocity

profiles. The evaporation of a thin film on a rotating surface was studied

by Butuzov and Rifert (1973). Closed-form solutions were derived for the

film thickness and heat transfer coefficient.

In all the studies mentioned above, the investigators have developed

analytical models for the phenomenon of the radial spread of fluid with or

without rotation, lost of these models are for a thin film generated by

the impingement of a liquid jet which is characterized by the jet velocity

and its diameter. Therefore, they cannot be readily applied to a situation

where the film is generated by a discharge from a pressurized container in

the center of the disk. Ioreover, none of these models handle very _ell

the hydraulic jump associated with these flows. The studies by _atson

(1964) and Chaudhury (1964) analyze in detail the supercritical region

before the jump, but make a simple assumption that the film height after

the jump remains constant, which is not true in reality, t systematic

investigation of thin fil_ flows discharged from a pressurized container in

the center of the disk has been carried out recently by Thomas et al.

(1989) (described in section I of this report),

(described in section IlI of this report)

(describ_,d in section V of this report). These

Rahman et al. (1989a)

and Rahman et al. (1989c)

studies considered both

supercriLical and subcritical flow regimes and used numerical techniques to

25o



develop computational procedures for thin film flows.
t

Thomas et al. (1989) approximated the flow to be one-dimensional in

nature by neglecting any variation of velocity across the thickness of the

film. The continuity and momentum equations were integrated across the

thin film to develop a single equation for the film velocity. The

resistance to the flow due to wall shear stress was expressed in terms of a

friction coefficient. Suitable expressions for the friction coefficient

were developed for regions close to the entrance where the thickness of the

momentum boundary layer is small compared to film thickness, and for

regions far away from the entrance where viscous effects propagate all of

the way across the film. These regions were matched where the two friction

coefficients yielded the same results. The equation of motion was solved

numerically using the _acCormack predictor-corrector method. Results were

obtained for both stationary and rotating disks for a number of inlet

Reynolds, Froude and Rossby numbers. In the presence of the jump, the

outlet Froude number was always assumed to be unity to simulate a situation

where the fluid experiences a free fall over the edge of the disk due to

gravity. It was found that jump moves downstream and may get washed away

with an increase in the flow rate, angular velocity and inlet Froude

number.

The studies by Rahman et al.

numerically using a boundary-fitted

regarding the velocity variation

1989a and 1989c) solved the flow field

coordinate system. No assumption

or friction coefficient were required.

The studies, however, covered only the case of a stationary disk. Since

the height of the free surface is dependent on the flow conditions and is

_I



not known ahead of time, an iterative procedure had to be used to determine

the correct location of the free surface. The method presented by Rahman

et al. (1989a) in section III of this report is termed as the 'pressure

optimization method' In this method, the shape of the free surface was

assumed to be described by an algebraic equation with two or more arbitrary

constants. The constants were optimized using an exhaustive search

technique that minimized the difference between the computed free surface

and ambient pressures. The method was found to be very satisfactory for

zero-gravity flo_s, _hich _as the primary emphasis in that paper. However,

in the presence of gravity when a jump existed in the flow field, the

method required the supercritical and subcritical flows to be computed

separately, and the solutions were matched at the location of the jump.

Even though this procedure yielded correct results in regions away from the

jump, it could not account for the details of the flow fieid in the

vicinity of the jump. This drawback was removed in the subsequent study by

Rahman et al. (1989c).

The method developed by Rahman et al. (1989c) in section V of this

report is termed as the 'porous wall method' In this method, the free

surface was assumed to be a permeable wall through which fluid particles

may leave or enter the control volume depending on the difference between

the fluid and ambient pressures. The shape of the surface was corrected in

successive iterations until the free surface conformed to a streamline and

the penetration through the surface reduced to zero. This method computed

the whole flow field as a single domain preserving the details of the flo_

in the jump region. The computed flow field, friction aad heat transfe_

coefficients were reported in that paper.
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The purpose of the present investigation is twofold. First, to

compute the flo_ field using the methods developed by Thomas et al. (1989)

and Rahman et al. (1989a and 1989c) for the experimental conditions

reported in Section II of this report. The theoretical and experimental

results can then be compared to find the merits and drawbacks of the

different prediction methods. The second objective of this work is to

improve the existing theoretical

computational procedure for thin

rotating disk.

models and to suggest a systematic

film flows adjacent to a stationary or

7.3 EqUtTIONS OF lOTION

The body-fitted coordinate system used

numerical computation is shown in Fig. 7.1.

for the two-dimensional

The local coordinates are

directed along lines connecting the centers of the adjacent grid cells.

The z-axis is directed along the direction of radial spread, i.e., the main

direction of flow. The y-axis is directed across the thickness of the

film. The height of the free surface from the solid wall is denoted by 6,

which varies with radial location on the plate.

The equations governing the conservation of mass and momentum in a

thin liquid layer involving a Newtonian, constant-property fluid can be

written as

v v : 0

-4

--4 --4

= _ V2DV i Vp + _ V + g (7.2)
DE p
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The boundary conditions are given by:

at entrance: V = Vin , 6 = _in (7.3)

at exit: V = rout,

=0,

6 = 6out, for stationary disk

for r6tating disk

p=pg y)

(7.4)

at solid wall:
-_ {0,V = -_

Vw ,

for stationary disk

for rotating disk

(7.5)

at free surface:

--4

av
= o, p = o (:,.6)

Bere n is the coordinate directed normal to the surface under

consideration. The p = 0 condition at the free surface is arrived at from

a balance of normal stresses where the effects of surface tension and other

stresses except for pressure is neglected. This is valid for a thin film

flow with large values of the Reynolds and Veber numbers.

7.4 Flow on a Stationary Disk

The situation where the disk is stationary with fluid emanating at the

center and spreading out uniformly in the radial direction is considered

first. Four sets of experimental data with flow rates ranging from 7 to 15

ipm were taken where the film height was measured in the supercritical and

subcritJcal regions. The measured data for 7 lpm and 11 lpm are plotted in
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Figs. 7.2 and 7.3, respectively, where it is compared with the one-
w

dimensional numerical solution by Thomas et al. (1989). It can be noticed

that the experimental data compare reasonably well with the numerical

solution in the supercritical region, but does not compare well in the

subcritical region. The height of the jump is also not correctly predicted.

In the numerical algorithm proposed by Thomas et al. (1989), the outflow

from the disk was simulated by assigning a Fr = 1 condition at that

location. Vhen the fluid flows out of the disk and experiences a free fall,

the subcritical flow has to transform to supercritical flow, and a critical

condition should exist somewhere in the vicinity of the outlet. However,

assigning Fr = 1 at the outlet does not seem to be adequate in this case.

From the figure, it can be also noticed that the measured height is higher

than the critical height, which suggests that the film is held up by some

sort of external force. It can be recalled here that in all previous

computations, the surface tension was neglected in all regions of the flow,

which may not be correct near the exit since an appreciable curvature of

the free surface is encountered due to the rapid turning of the flow.

In the presence of surface tension, the fluid and ambient pressures

can be related by the equation

2ff

Pe - Pa = _ (7.7)
tt

where R is the radius of curvature, If

hydrostatic in nature, this equation

height, as

the pressure is assumed to be

can be expressed in terms of fi!m
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* 20"
: + --'- (7.8)

pgR

where 6e is the actual film height at the exit, and 6 is the critical

height predicted by the Fr = 1 condition at the exit. To solve this

equation, an estimate for R is required, since that is unknown in general.

In the case of the stationary disk, we may assume that the thickness of the

film remains approximately constant in the region where the flow changes

its direction from horizontal to vertical. This means that the radius of
A

curvature remains of the same order as the film height. Substituting R =

6e and solving for it, we obtain

.j6 + 6*2 + 8_._

6e = 2 #_ (7.9)

where 6

Equation (7.9), even though quite approximate in nature, seems to give

a good estimate of film height at the exit. This is demonstrated in Table

7.1, where the height calculated by equation (7.9) is compared with the

measured height at the last data point from the exit where measurement was

reliable. The deviation is within 10_. From Table 7.1, it can also be

noticed that the deviation has a sign change and increases with the flow

rate. Vhen the flow rate is increased, the fluid particles move over the

disk with a larger amount of inertia and get swept away further before

experiencing the falling motion due to gravity. This increases the radius

of curvature of the free surface and thereby decreases the effects of
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Table 7.1: Comparison of Calculated and Keasured Film

Height at Outlet for a Stationary. Disk
g

ile.a_ured Reight
(_)

Calculated lleight
(_)

Deviation

(z)

7 4.4196 4.3378 -1.85

9 4.318 4.4357 2.73

1I 4.369 4.5284 3.65

13 4.216 4.617 9.51
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surface tension. So, using R : 6 e
0

exit. The opposite is true for a

overestimates the film height near the

smaller flow rate. The estimate,

however, is reasonable considering the simplicity of the formulation.

The computed result with 6 = 6e at the exit with the same inlet

condition as the experiment is shown in Figs. 7.2 and 7.3 for flow rates of

7 and ll lpm, respectively. Now, the subcritical film height compares

reasonably well with the experimental data. In the supercritical region,

the height remains the same as that computed by the original procedure of

Thomas et al. (1989). The location of the jump moves further upstream for

both flow rates. The measured location of the jump is found to be somewhere

in between the two numerical results. It can also be noticed that the

one-dimensional solution simulates the jump as a sudden rise of film height

that occurs across a single grid cell. In reality, the jump occurs

somewhat more gradually, which in our experiment spanned over a length of

6-25 mm. Even with these drawbacks, the one-dimensional numerical solution

developed by Thomas et al. (1989) may be used for a quick estimate of the

subcritical and supercritical film height distribution if the aodification

of the outlet boundary condition proposed here is incorporated.

The experimental data for 7, 9, and 11 lpm are compared with the

two-dimensional numerical solutions of Rahman et al. (1989a and 1989c) in

Figs. 7.4, 7.5, and 7.6, respectively. Rere, we have used the first and

last data point as the inlet and outlet conditions for the numerical

computation. The computed results by the method of Thomas et al. (1989)

are also shown here for a relative c_,:_i),_rison. In the two-dimensional

numerical solution by Rahman el al. (198!)a, 1989c), the velocity profile at
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the entrance is assumed to be parabolic in nature with a maximum at the

*

free surface. This condition is not present in our experiment since the

flow comes through a slot before being discharged onto the disk. So, at

the entrance the maximum is expected to be somewhere halfway between the

solid walls. After a short distance from the entrance, the flow is

expected to evolve to a parabolic profile with the maximum velocity at the

free surface, since the no-slip condition exists on the solid wall and the

zero-shear condition is present on the free surface. Therefore, using the

first measured data point as the entrance instead of the physical inlet is

more justified for comparison with the two-dimensional numerical solution.

Also, analogous to the one-dimensional solution of Thomas et al. (1989),

Rahman et al. (1989a and 1989c) used Fr = 1 to simulate the outflow

condition from the disk. As we have already discussed, this is erroneous

and the height (or Froude number) at the exit needs to be estimated taking

into account the surface tension effects. Equation (7.9) can be applied

for this purpose. Since the effects of the surface tension at the outflow

location have been already demonstrated in Figs. 7.1-7.2, in these

computations the actual experimental measurement has also been used for the

exit boundary to eliminate any error associated with the theoretical

estimate.

It can be seen that the 'pressure optimization method' developed by

Rahman et al. (1989a) predicts the correct location of the jump. The film

height in the supercritical and subcritical regimes are also very well

predicted. In this method, the supercritical and subcritical flows are

computed separately by strictly imposing the inlet and outlet boundary

conditions, respective]y. The solutions are then matched at the jump
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location by preserving the conservation of mass and momentum at the jump.

In the original method, the jump happens instantly across one grid cell.

In the solution presented here, we have modified it to allow the jump to

form across a number of cells that result in a minimum overall pressure

difference between the fluid and the ambient. The location for the

initiation of the jump was kept the same and only cells at the downstream

side were added to it. The quantity optimized was still the Ills error in

the free surface pressure normalized by the initial total head (see Rahman

et al., 1989a). In this process, both the supercritical and subcritical

regimes were considered together along with the jump region. The solutions

plotted in Figs. 7.4- 7.6 correspond to the slope of the jump that resulted

in the minimum RMS error of the free surface pressure. The figures

indicate that the two-dimensional solution predicts the location and slope

of the jump somewhat better than the corresponding one-dimensional

solution. So far as the location of the jump is concerned, the

one-dimensional solution appears to be good for 7 lpm, but it predicts the

jump at a radial location closer to the inlet for both 9 and 11 lpm.

Even though the modified 'pressure optimization method' gives the

gross structure of the jump, the details of the free surface in the jump

region can only be obtained by using the 'porous wall method' developed by

Rahman et al. (1989c). In this method, the local free surface height is

changed in each iteration depending on the local velocities at the free

surface. _oreover, a global variation is taken into account by minimizing

the overall rate of penetration through the free surface. The surface

evolves by itself as the iteration proceeds and the solution corresponding

to the minimum rate of penetration is taken to be final. It can be noted
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in Figs. 7.4-7.6 that the film height predicted by the 'porous wall method'

most closely matches the experimental data, particularly in the jump

region. Is mentioned by Rahman et al. (1989c), the 'porous wall method' is

quite sensitive to the initial guess of the free surface height

distribution and has rather slow convergence characteristics. So, the best

prediction approach one can follow is to use the 'pressure optimization

method' first to get the gross structure of the jump, and refine that

prediction using the 'porous wall method'.

The details of the flow field for the flow rate of 11 lpm is shown in

Fig. 7.7. It can be noticed that the velocity profile is parabolic at

r = 0.108 m. This location corresponds to the supercritical region. _ere

the flow is well-structured with the maximum velocity at the free surface.

This is the typical velocity profile in most of the supercritical region.

However, as the jump is approached and the film height increases, the free

surface tends to experience more and more force due to the gravitational

head, and the location of the maximum velocity moves down from the free

surface to somewhat inside the film. This can be seen in the vector plot

centered around r = 0.153 m, where the jump has already started. After

initiation of the jump the flow also loses inertia rapidly due to the

sudden change in film height. Flow separation is encountered both at the

solid wall and on the free surface, which can be noticed in both plots

corresponding to r = 0.153 and r = 0.167 m. The separation from the solid

wall is due to frictional resistance and was previously seen in the

experimental work of Nakovyakov et al. (1978) and the numerical computation

of Rahman et al. (1989c). Nakovyakov (1978) actually measured the wall

shear stress for a circular hydraulic jump of a thin liquid film and found
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>: 3,0000E-01 m/_.
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r--O.lflTm

Fig. 7.7 Velocity vectors for thin film flow adjacent to a stationary disk

(flow rate = 11 lpm)
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jump. Rahman et al. (1989c) reported a numerically computed

coefficient that was negative in the vicinity of the jump.

reattaches to the surface after some distance in the subcritical

to be negative for a short distance downstream from the location of the

friction

The flow

region.

The separation of the flow at the free surface is due to the gravitational

pressure gradient and is more commonly termed as a 'surface roller' in the

hydraulics literature (Rajaratnam (1967), for example). This roller was

not observed previously in other investigations on thin film flows. The

reason was that a jump in a thin film flow was believed to be an

instantaneous phenomenon and was modeled accordingly, so the details of the

flow structure at the jump could not be captured. This phenomenon can be

seen when the jump is allowed to develop gradually over a distance. In

Fig. 7.7, it can also be noticed that the surface roller starts up at an

earlier location and covers a larger region than the separation eddy near

the solid wall. As seen in Fig. 7.6, the length of the subcritical region

for this flow rate is quite small. If sufficient length is allowed, the

flow again develops to a regular parabolic structure with the zero velocity

at the solid wall and the maximum velocity at the free surface.

7.5 F10w on a Rotating Disk

Vhen the disk rotates about its axis, in addition to inertial,

gravitational and viscous forces, the centrifugal and Coriolis forces shape

the flow structure as it moves downstream. For an appreciable rotational

velocity (as is considered in our experiment), the subcritical flow region

is swept out fr_m the disk and no jump can be present. It may be recalled

here that the le_th of the subcritical flow regime was small even with a

stationary disk. If a disk of much larger diameter was considered, a jump
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could be possible at a smaller rate of rotation.

Ve first consider the data corresponding to an intermediate flow rate

and angular velocity (11 lpm, 100 rpm), which are plotted in Fig. 7.8 along

with the theoretical prediction of Thomas et al. (1989). It can be noticed

that the numerically determined film height is reasonable at smaller radii,

but seems to deviate from the measurement at larger radii. Both the

experimental measurements and the theoretical computation show that the

film height increases downstream, attains a peak and then decreases. The

experimental data also shows an increment of height near the exit. This

increment is believed to be caused by the surface tension as discussed

earlier in this section. The effect of surface tension is smaller for a

rotating disk than that for a stationary disk since the flow moves over the

disk with a higher velocity and results in a larger radius of curvature.

In the numerical solution of Thomas et al. (1989), the flow was assumed to

be strictly radial in nature with a superimposed solid-body rotation. The

resistance to the flow due to friction was taken to be the resistance in

the radial direction. In the azimuthal direction, the velocity remained

constant all across the thickness of the film with no resistance from the

solid wall. In reality, however, the velocity is expected to change due to

the finite viscosity of the fluid, so there will be frictional resistance

from the wall in the azimuthal direction.

To account for the frictional resistance due to the angular velocity,

we may define the total shear stress as
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j 2 2 - - (7.1o)r w = T¢_ + T r

Here rr = cf (1/2 p V2), where cf can be calculated by using the Blasius or

parabolic solution given by Thomas et al. (1989). r_ can be estimated from

the exact solution of laminar flow adjacent to a rotating disk in an

infinite extent of fluid. As given by Schlichting (1979),

= 0.6 prv I/2 3/2 (7.11)

Using rw as the shear stress at the. solid wall in the formulation by Thomas

et al. (1989), the film height distribution was calculated and is shown in

Fig. 7.8. The predicted film height compares reasonably well with the

experimental data. So, at an intermediate flow rate, both components of

frictional resistance are important and one cannot be entirely neglected in

favor of the other.

Figures 7.9-7.11 show the comparison of the numerical results with the

experimental data for other rotational speeds tested in the experiment.

For a smaller rate of rotation (55 rpm), it can be seen that the modified

numerical solution predicts the experimental data except for the region

close to the outlet where surface tension is large. The original procedure

of Thomas et al. (1989) somewhat underestimates the film height in the

region away from the center where centrifugal force becomes large. For

large rotational rates (200 rpm and 300 rpm), however, the method of Thomas

et al. (1989) appears to be reasonably satisfactory and predicts the trend

of the experimental data better. The assumption of solid-body rotation
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inherent in the formulation of Thomas et al. _1989) become more appropriate
D

at smaller values of the Rossby number, i.e., at higher rates of rotation,

so the trend seen here may be expected. Hoverer, we should also keep in

mind the limitations of a simple one-dimensional numerical solution, ts

seen in the experiment, waves appear on the surface and become more intense

at a higher spin rates. The turbulence may also be triggered at a higher

rate of flov or rotation, t two-dimensional solution with rotation may

address some of these issues, which is beyond the scope of the present

paper.

7.6 GONCLUSION$

The experimental data were compared with the existing numerical

solutions of radially spreading thin film flows adjacent to a stationary or

rotating disk. Some of the drawbacks of the existing numerical methods are

pointed out and corrected. The detailed structure of the flow for a

stationary disk is also computed and discussed.

It was found that surface tension is important at the outer edge of

the disk. For a stationary disk, a simple model for estimating film height

at this location is proposed, tt other locations in the flow, the surface

tension can be neglected. For a stationary disk, the one-dimensional

numerical method of Thomas et al. (1989) or the two-dimensional methods of

Rahman et al. (1989a and 1989c) should always be applied with the correctly

estimated outlet Froude number, instead of using Fr : 1 to simulate a

critical (free falling) outflow condition.

In the case of a rotating disk, the frictional resistance due to

i

276 i



angular velocity was found to be important. }t a smaller rate of rotation,
o

the resultant frictional resistance was found to be more adequate to

predict the film height than using only the radial component.

The increment in film height at

spanning over a number of grid cells. In

optimization method' after determining

the jump was found to be gradual

the two-dimensional 'pressure

the location of the jump, an

additional procedure for adjusting the slope of the jump may be included to

arrive at a better structure of the free surface. The two-dimensional

'porous wall method' given by Rahman et al. (1989b) can be used as it is

except for imposing the correct Froude number at the outlet. It was also

found that recirculating flow is present in the vicinity of the jump, both

at the solid wall and on the free surface. The separation of flow at the

solid wall is due to the viscous resistance exerted by the _all that

overcomes inertia _hen the film height rises. The separation on the free

surface is due to the adverse gravitational pressure gradient.
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Appendix A: EquIPIENT SPECIFICATIONS

4

The equipment for the rotating disk unit

subsystems for the description of the components:

is divided into four

,

2.

3.

4.

Rotating disk assembly

Liquid film height measurement system

Heat transfer measurement system

Liquid circulation system

I. Rotating disk assembly

a) Rotating disk

Material: 6061 aluminum

Diameter: 406.4 mm

Thickness: 6.35 nun

Surface finish: 3.81 x 10 -4 mm

Perpendicularity to centerline of spindle:

-3
Flatness: 2.5 x 10 nun

-3
2.5x i0 mm

b) Collar

Material: 316 stainless steel

Outer diameter: 102 mm

Perpendicularity to centerline of spindle: 6.0 x 10 -4 mm
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c) Shim

i

iaterial: 316 stainless steel shim stock

Thickness: 0.673 rm

d) Spindle and motor

• Whitnon model 699-0080-000 "piggyback" spindle/motor assembly

Spindle bearings: ABEC #7 angular contact ball bearings

Spindle shaft: 440 stainless steel hardened to 50-55 Rockwell "C"

except at shaft extension which will be 38-42 Rockwell "C" due to

thin cross section

Electric motor: 0.5 HP at 900 RPi with an input of 230/460 V, 3

phase, 60 Hz (0.75 A @ 460 V)

Driver and driven pulleys are interchanged to obtain speed range

change. A frequency inverter will be used to vary the speed within

each speed range.

Frequency inverter: 4.5 A @ 460 V

Low speed range: 55 to 374 RPi

High speed range: 423 to 1987 RPi

e) Radial encoder and speedometer

• Airpax solid 60-tooth gear, magnetic pickup, and digital display

Accuracy: _1RPI over speed range of 55 to 1987 RPM
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2. Liquid film height measurement system
J

a) Non-contact capacitance sensor

• ITI model ASP-IOO-CTA

Accuracy: *0.002 mm

Resolution: *0.002 mm

b) Data logging system

• Fluke model 2280A Data Logger

c) Digital micrometer

• iicrocode model 9598

Accuracy: ,0.002 mm

Resolution: ,0.002 mm

d) Precision slide

• iicroslides model A-6166-LC crossed roller bearing slide assembly

Accuracy: Run-out over 130 mm = *2.6 x 10 -3 mm

3. leat transfer measurement system

a) Etched foil heater

• iinco mica heater

Outer diameter: 356 mm

Inner diameter: 102 mm

Thickness: 0.635 mm

(6) - 3.18 mm holes for thermocouples
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Maximum operating temperature: lO0°C

Electrical specifications_ 500 V, 41.67 fi, 12 A, 6000 V

iaximum heat flux: O.O V/cm 2

b) Ceramic insulation

• Aremco 502-600 machinable ceramic

laximum operating temperature: 590°C

Thermal conductivity: 0.15 V/(m-K)

c) Thermocouples

• Type "T" copper-constantan

laximum useful range: -200 to 350°C

Maximum error over range: 0.5°C

d) Digital thermometer

• Fluke model 2280A Data Logger

Thermocouple conformity: Better than 0.05°C

e) Slip- ring capsule

• Electro-Tec model ETC P/N 67584

Number of rings/circuits: 20

Current ratings: 3 i at 500 VDC

Contact resistance (noise): 25 mfi at 100 mA (10 RPM)
*

Life: 18 million revolutions at 8 RPM

Operating environment: -55 to 125°C
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4. Liquid circulation systea
I

a) Rotating union

• Deublin series 1106

b) Digital flow meter

• Cole.Parmer model J-5618-04 |icet semi-micro flow sensor

Range: 1.51 to 17.0 LPI

laximua pressure: 3.76 x 105 Pa at I05°C

Linearity: 11Z full scale .

Repeatability: i0.25 Z full scale

• Cole-Parmer model J-5622-35 Line powered flo_ meter

Accuracy: _I Z full scale

Repeatability: i0.5 Z full scale
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The

explained.

rotating

Appendix B:

details of the

This includes

fluid coupling,

the etched foil heater.

DESIGN OF THE ROTATING DISK ASSEI[BLY

design of the rotating disk assembly will be

the rotating disk, spindle, electric motor,

and the electric power supply for the motor and

Figure B.1 is an overall view of the rotating disk assembly as it appears

in the experimental setup. The electric motor is mounted to the spindle,

which in turn is mounted onto the vertical frame plate. The spindle is

driven by a poly-groove belt vhich can be removed by taking a cotter key

out and driving a pin down and out of a hole on the plate the electric

motor is

spindle.

spindle.

mounted on. This allows the electric motor to swing toward the

This procedure is also performed to change the speed range of the

Near the pulley on the spindle in Fig. B.1 is the magnetic pickup for

the tachometer. It is mounted through a housing such that it is

approximately 0.254 mm (0.010 in.) from a special gear. is the teeth pass

by the active sensor, a square wave proportional to the angular speed is

generated, which is then read and displayed by the digital readout.

The rotating disk and collar are also shown in Fig. B.1. The collar

is mounted onto the spindle shaft with four screws which pass up through a

ceramic insulator ring. This is to prevent excessive heat from reaching

the high-precision bearings. An O-ring seal is placed between the spindle

shaft and the inner diameter of the collar to prevent water from passing
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over the top of the collar, l shim is placed between the collar and
i

rotating disk to set the initial gap height. Caution must be used when

installing this shim so that the chamfer or bevel on the inner diameter of

the shim is directed upward to mate with the small radius where the spindle

shaft has a step in diameter. Otherwise, the shim and rotating disk will

not seat properly, llso, it was found that the thickness of the shim does

not correspond to the initial gap height, as was originally planned.

Therefore, feeler gages must be used to directly measure this gap. Like

the collar, the rotating disk has an O-ring to prevent water from running

directly down the spindle shaft. The large nut below the rotating disk

holds the disk against the spindle. In order to achieve repeatability in

the stationary film thickness measurements, marks were placed on the collar

and the rotating disk for alignment purposes. The two marks were first

aligned with each other, and then the marks were aligned with the

capacitance probe. _ith this procedure, repeatability could be achieved.

Some preliminary tests were made with two different collars which are

shown in Fig. B.2. The first design was a reducer as shown in Fig. B.2a.

The part of the reducer that was closest and parallel to the disk acted as

a flow straightener, which directed most of the liquid to flow in the

radial direction. Iowever, part of the fluid would rebound off of the disk

underneath the flow straightener, which resulted in splashing around the

collar at moderate and high flow rates. To eliminate this problem, the

collar shown in Fig. B.2b. was tested and it was found that the splashing

was not present _ith the longer flow straightener.

When the disk was rotated, it was found that a significant amount of
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water spray was generated by the liquid film Ieaving the disk and

rebounding off of the Lexan water tank. This created problems with water

droplets splashing onto the capacitance probe, so a screen mesh was draped

on the sides of the tank to absorb the kinetic energy of the droplets and

prevent the water spray from rebounding off of the tank.

Below the rotating disk is a cylindrical coupling between the spindle

shaft and the rotating fluid union. These items must be removed before the

rotating disk can be taken off of the apparatus.

Figure B.3 shows a view of the footprint where the spindle mounting

holes are located. Also shown is the top view of the pulley housing on top

of the rotating disk assembly. The low speed range is shown in Fig. B.3,

whereas the pulleys are reversed to achieve the high speed range.

Figure B.4 presents the side and top views of the aluminum rotating

disk. Six holes are drilled from the underside to just below the surface

of the disk for the placement of thermocouples along one radius. The top

of the disk is coated with an aluminum oxide coating to prevent oxidation

on the surface of the disk.

Figure B.5 shows the design of the insulating ceramic disk. I cutout

at the top of Fig. B.5 on the ceramic disk is for the electric heater

leads. The six holes for thermocouples are drilled completely through the

ceramic disk.

The electrical diagram for the rotating disk unit is shown in Fig.
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B.6. The line voltage comes into the receptacle to the left of the
J

frequency inverter. The plug should never be disconnected from the

receptacle when either of the transformers are operating. To energize the

electric motor, first switch on the disconnect and then turn on the

frequency inverter switch. Turn the system off by reversing the procedure.

The electric motor speed is controlled with the remote control panel box

supplied with the frequency inverter. After the start button is depressed,

the speed dial can be turned to adjust the speed. The disk speed is

leveled off when the "at speed" lamp is lit.

To energize the electric heater on the rotating disk, turn down the

variable ac transformer and turn on the main and heater disconnects. The

variac can then be adjusted for the desired power input. Care must be

taken because the output of the receptacle is 0 - 480 V.
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Appendix C: ERROR ANALYSIS

In order to properly report any experimental data, an analysis of the

errors involved in taking the data must be given. In the present

experimental setup, the errors involved in taking two measurements will be

described and quantified: the liquid film height, and the liquid flow rate.

Liquid film height

The error in measuring the liquid film height involves three pieces of

equipment: the digital micrometer, the capacitance sensor, and the

rotating disk. To evaluate the error in the film height measurement, the

individual errors of each of these pieces of equipment must be found. A

summary of the method to determine the error will now be given. A full

discussion on error analysis is given by Miller (1989).

If N is a known function of n independent variables Ul, u2, ... , Un,

= f(u 1, u2, ... , un)

the absolute error is given by expanding the function f in a Taylor series

, • , • _Un) = f(u 1 u2 • un)f(u 1 i 5u 1 u 2 i Au2, .. u n , , .. ,

af Of Of i [ [02f (_u)2} 1

(c.1)
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where the partial derivatives are evaluated at the. measured values of u i-
I

If the instrumentation errors bui's are small quantities, the terms which

include (bui)2 will be negligible. Therefore, equation (C.1) is

approximately given by

• . , • f(u I, u2 ...f(u I i AUl, u2 • bu2, . un bUn) = , , Un)

The absolute error of the system is then given by

E a = AN = Iof • bUnl (c.3)

where bu. is
1

measurements.

the absolute error associated with the individual

If the bu's are considered to be statistical bounds on the

instrument errors, such as 95 percent confidence levels, the formula for

computing the overall error is modified using the root-sum square formula

Of 2 + Of bu 2
Erss = _II bul + "" _nn bun (C.4)

The liquid film height is given by the following equation:

+ h" (c.5)

where h' is the digital micrometer reading, (h + _h) is the capacitance
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probe reading of the air gap between the probe and the dry disk,

the capacitance probe reading of the air gap between the probe

surface of the liquid film.

and h" is

and the

Applying equation (C.4) gives

Ers s = ,[(Ah')2 + [A(h + Ah)12 + (Ah") 2 (C.6)

The first term in equation (C.6) is the stated accuracy of the digital

micrometer, which was calibrated, at the factory with an NBS traceable

lark-Tech Laser Gage Jodel 7980. The maximum deviation over the range of

movement reported on the calibration certificate is 0.001 mm. This value

is then taken as the maximum error of the instrument. Therefore,

Ah' = 0.001 mm

The second term involves the accuracy of the capacitance sensor, which

is given by the manufacturer to be iO.1 percent of the range when

calibrated to a known standard. In the present experimental setup, the

known standard was taken to be the digital micrometer. The capacitance

probe was calibrated at the beginning of each test against the digital

micrometer in the following manner:

I. The capacitance probe is lowered until it lightly touches the surface

of the disk, which can be seen with a lamp directed behind the probe.

The capacitance probe is then zeroed at this point with the offset

adjustment.
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J The probe is then raised 0.0254 mm above the disk, where the digital

micrometer _s zeroed. This is done to eliminate any backlash in the

digital micrometer.

. The capacitance sensor is then raised until it reads the maximum value

of its range, which is 2.54 mm.

The value read on the capacitance sensor readout is compared to what

is shown on the digital micrometer readout. Any discrepancy can be

eliminated by a gain adjustment which is supplied on the capacitance sensor

readout. This sets the slope of the linear curve which relates the

strength of the electric field to the height of the air gap. By choosing

points at 0.0254 and 2.54 mm, the slope can be set over 99 percent of the

range for the greatest accuracy. The linearity of the capacitance probe

over its range was checked, and the maximum deviation was found to be 0.008

mm. This value will be added to the stated accuracy of the probe.

The second term in equation (C.8) takes on different values when the

disk is stationary and when the disk is rotating. Vhen stationary, the

second term is the accuracy of the capacitance sensor given by the

manufacturer, which is _0.1 percent of the range when calibrated to a known

standard, plus the maximum deviation of the linearity of the probe over its

range. Therefore, when the disk is stationary, the second term is

_(h + Ah) = 0.01 mm

When the disk is rotating, the error due to the disk not being
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perfectly fiat and the wobble caused by the bearings must be taken into

account. The error when the dry disk is rotating is given by the sum of

the standard deviation of the air gap measurement between the probe and the

dry disk taken at the outer edge of the disk (where it is maximum) and the

combined error of the capacitance sensor reported by the manufacturer and

the deviation from linearity of the probe. The standard deviation of the

disk with 50 samples is ¢ = 0.02 n. Multiple populations with an

increasing number of samples were taken to compare the means using a

two-tailed z-test to ensure a sample number that is within the 95 percent

confidence interval. Therefore, the maximum error in the tare data is

A(h + = 0.03 u

The last term in equation (C.6) is again the error associated with the

capacitance sensor:

Ah" = 0.01

Due to the fact that the mean film thickness is being reported,

further comments concerning the third term in equation (C.6) are necessary.

tt all flow rates and rotational speeds, waves were present on the free

surface of the liquid film. Figures (C.1 and C.2) present typical mean h"

values and standard deviations as a function of the number of samples taken

for the stationary subcritical and supercritical regions, respectively. In

each case, the same population was examined for different numbers of

samples to minimize the effect of the variation in the flow rate. For

subcritica] flow, a normal z-test was performed, and it was found that for
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125 and 250 samples, the means were equal at the 95 percent confidence

level, so 250 samples were taken for each data point reported. Likewise,

for supercritical flow 80 samples were taken in order to achieve the same

confidence level. It should be noted that the standard deviations from the

mean are not errors in the instrumentation but are actual variations in the

mean film thickness due to the wavy nature of the free surface of the

liquid film. I similar test performed when the disk was rotating showed

that the number of samples needed for the 95 percent confidence level was

the same as that for the stationary supercritical region. The overall

root-sum-square error in the liquid.film height measurement is as follows:

Stationary disk -

Ah' = 0.0001 mm, A(h + Ah) : 0.01 mm, Ah" : 0.01 mm

Ers s = iO.O1 mm

Rotating disk -

Ah' = 0.0001 nun, A(h + Ah) = 0.03 mm, Ah" = 0.01 mm

E = _0.03 mm
rss

Vhile the liquid film height at the collar could not be measured with

the capacitance probe, the gap between the coltar and the disk could be

measured _ith feeler gages. Therefore, for the data point at the collar,

the absolute error in the liquid film height was found to be

E = ± 0.01 mm
a
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Flow meter

It is

the present experiment. The turbine flow sensor

were calibrated in the following manner:

desired to determine the accuracy of the flow rate reported in

and digital flow meter

. 1

this line was measured with a 1000

volume was measured three times

readings was 17.23 • 0.08 L.

line was drawn on the inside of a large bucket, and the volume to

5 ml graduated cylinder. The

and the average of these three

. The flow rate through the flow sensor was allowed to reach the steady

state at 12.5 • 0.05 LPI, which is within the range of the reported

flow rates.

o The timer was started and the water was directed into the calibrated

bucket.

e The amount of time to fill the bucket to the line was noted and the

actual flow rate was checked against the reading on the digital flow

meter.

B The gain on the digital flow meter was changed until the flow rate

read on the flow meter checked to within *0.05 LPM of the measured

flow rate.

The accuracy of the actual flow rate measured with the bucket and the
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stop watch can be determined with the

J

section concerning the capacitance

method outli.ned in the previous

sensor. The equation for finding the

flow rate is q = V/t, where V is the volume and t is the amount of time.

The absolute error is given by the following equation:

The time and volume measured are as follows:

t = 1.37 i 1/60 min.

¥ = 17.23 • 0.08 L

The partial derivatives are

= _ = _ = 0.730 LPM/L

V _ 17.23 9 18 LPiI/min
= _ t--.2 = (1.37)2 - ,

The error in the flow rate measured with the stop watch and the bucket is

Ea = 1(0.730)(0.08)1 + 1(-9.18)(1/60)1 = 0.2 LPM

The maximum deviation of the flow rate read on the digital flow meter

from the actual flow rate was found to be • 0.05 LPM. The variation of the

flow rate due to the circulation pump for each test where the film
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thickness is measured was held to * 0.05 LPI, Therefore, the total error

on the flow rate'is the sum of these three readings:

Ea = *0.3 LPI
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Appendix D:

Experimental parameters:

EXPERIIENTAL DATA

r. : 50.8 mm
in

rou t = 203.2 mm

6. = 0.267 mm
In

Fluid temperature = ambient temperature = 22°C

_orking fluid = de-ionized water
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Table D.1 Experimental data for the

Radial Location 7 LPI 9 LP! 11 LP!

50.80 O. 267 O. 267 O. 267

76.20 O. 322 O. 282 O. 269

81.28 0.330 0.289 0.277

86.36 O. 345 0.300 O. 284

91.44 0.361 0.315 0.297

93.98 0.378 --- ---
°

96.52 - - - 0.330 0.310

101.6 - -- 0.350 0.325

106.7 - - - O. 368 O. 340

111.7 --- 0.391 0.361

114.3 --- 0.429 ---

116.8 - - - O. 444 O. 383

-- - 0.411121.9 -- -

127.0 4.37 -- - O. 442

129.5 4.42 ......

132.1 4.42 --- 0.490

134.6 4.47 ......

137.2 4.47 2.92 ---

139.7 --- 3.30 ---

142.2 4.47 3.55 ---

144.8 --- 3.78 ---

stationary disk

13 LPM

0.267

0.264

0.272

0.277

0.287

O. 297

0.312

0.330

0.348

0.371

0.396

0.424

0.460

0.485

0.516

0.549

15 LPM

0.267

0.250

0.254

0.259

0.266

0.267

0.288

0.301

0.320

0.340

0.359

O.388

0.412

0.441

0.469
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Table D.1 Experimental data for the stationary

Radial Location 7 LPM 9 LPI 11 LPM

147.3 4.52 3.94 ---

152.4 4.52 4.14 2.82

._ - 3.20154.9 - --

157.5 4.52 4.24 3.45

- -- 3.63
160.0 -- -

162.5 4.52 4.34 3.84

167.6 4.52 4.34 4.09

170.2 ......

172.7 4.52 4.39 4.19

175.3 ......

177.8 4.52 4.39 4.29

182.8 4.52 4.39 4.34

187.9 4.47 4.39 4.37

190.5 --- 4.34 4.37

193.0 4.42 4.32 4.32

195.5 4.27 --- 4.16

disk, continued

13 LPM 15 LPM

--- 0.487

--- 0.523

--- 0.550

--- 0.568

2.87 0.596

3.17 ---

3.48 0.644

3.63 ---

3.78 ---

4.04 ---

4.16 ---

4.22 1.90

4.16 2.22

4.06 2.45

310



Radial

Table D.2. Experimental data for

I

Location 7 LP! 9 LPi

50.80 0.267 0.267

76.20 0.328 0.317

81.28 0.333 0.325

86.36 0.353 0.335

91.44 0.366 0.348

96.52 0.386 0.363

101.6 0.404 0.376

106.7 0.424 0.396.

111.7 0.444 0.409

116.8 0.462 0.439

121.9 0.478 0.452

127.0 0.490 0.467

132.1 0.500 0.477

137.2 0.513 0.490

142.2 0.513 0.513

147.3 0.513 0.513

152.4 0.505 0.518

157.5 0.505 0.521

162.5 0.495 0.533

167.6 0.480 0.531

172.7 0.457 0.508

177.8 0.457 0.511

the rotating disk: 55

11LPM 13 LPI

0.267 0.267

0.279 0.284

0.284 0.287

0.292 0.295

0.305 0.302

0.312 0.310

0.328 0.325

0.343 0.338

0.358 0.351

0.373 0.371

0.399 0.396

0.414 0.411

0.429 0.444

0.455 0.457

0.470 0.483

0.500 0.503

0.503 0.518

0.528 0.528

0.528 0.543

0.528 0.543

0.528 0.546

0.528 0.561

RPM

15 LPI

0.267

0.274

0.279

0.287

0.292

0.300

0.315

0.330

0.345

0.363

0.389

0.401

0.429

0.442

0.460

0.475

0.5O5

0.518

0.531

0.541

0.551

0.551
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Table D.2. Experimental data for the rotating disk: 55 RPM, continued

ladial Location 7 LPI 9 LP! 11LPI 13 LPI 15 LPi

182.8 0.429 0.508 0.528 0.546 0.577

187.9 0.457 0.508 0.551 0.546 0.577

190.5 0.508 0.551 0.551 0.561 0.577

193.0 0.805 0.729 0.635 0.587 0.577

195,5 1.32 1.09 0.808 --- 0.630
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Table D. 3.

s

Radial Location 7 LP!

50.80 0.267

76.20 O.317

81.28 O. 325

86.36 O. 333

91.44 0.348

96.52 O. 363

101.6 0.381

106.7 O. 394

111.7 0.404

116.8 0.414

121.9 0.419

127.0 O. 424

132.1 O. 424

137.2 0.419

142.2 0.411

147.3 O. 401

152.4 O. 391

157.5 O. 383

162.5 0.371

167.6 0.358

172.7 0.343

177.8 0.335

Experimental data for the rotating disk: 100

9 LPI 11 LPI 13 LP|

0.267 0.267 0.267

0.312 0.300 0.297

0.320 0.302 0.302

0.328 0.307 0.305

0.338 0.315 0.312

0.351 0.325 0.323

0.366 0.338 0.333

0.378- 0.351 0.345

0.394 0.366 0.361

0.404 0.381 0.378

0.417 0.394 0.394

0.422 0.406 0.411

0.427 0.424 0.427

0.427 0.424 0.442

0.427 0.432 0.442

0.427 0.432 0.452

0.424 0.432 0.460

0.422 0.429 0.460

0.411 0.429 0.452

0.404 0.419 0.457

0.399 0.422 0.452

0.386 0.414 0.449

15 LPI

0.267

0.307

0.312

0.320

0.325

0.340

0.351

0.366

0.381

0.404

0.399

0.419

0.442

0.460

0.470

0.477

0.483

0.493

0.495

0.498

0.485

0.483
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Table D.3. Experimental data for the rotating disk: 100 _PI, continued

_adial Location '7 LPi 9 LPI 11LPi 13 LPi 15 LPI

182.8 0.328 0.i81 0.396 0.445 0.483

187.9 0.315 0.371 0.394 0.432 0.462

190.5 0.312 0.371 0.409 0.442 0.460

193.0 0.310 0.363 0.406 0.442 0.465

195.5 0.330 0..373 0.406 0.432 0.457
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Table D.4. Experimental data for

Radial Location 7 LPM 9 LPM

50.80 0.267 0.267

76.20 0.302 0.290

81.28 0.305 0.297

86.36 0.307 0.300

91.44 0.310 0.305

96.52 0.307 0.307

101.6 0.307 0.312

106.7 0.305 0.315

111.7 0.297 0.315

116.8 0.290 0.312

121.9 0.282 0.305

127.0 0.272 0.302

132.1 0.259 0.292

137.2 0.249 0.282

142.2 0.239 0.272

147.3 0.229 0.269

152.4 0.221 0.254

157.5 0.211 0.246

162.5 0.201 0.231

167.6 0.193 0.226

172.7 0.188 0.216

177.8 0.180 0.213

the rotating disk: 200

11LPM 13 LPM

0.267 0.267

0.279 0.269

0.284 0.274

0.287 0.277

O.295 0.284

0.300 0.287

0.305 0.292

0.310 0.3O2

0.315 0.307

0.318 0.318

0.318 0.320

0.318 0.328

0.315 0.325

0.305 0.320

0.302 0.315

0.290 0.307

0.281 0.297

0.269 0.295

0.259 0.284

0.251 0.277

0.241 0.269

0.236 0.259

R.PM

15 LPM

0.267

0.272

0.279

0.284

0.292

O.30O

0.310

0.322

0.330

0.343

0.350

0.356

0.358

0.358

0.356

0.353

0.348

0.340

0.333

0.325

0.320

0.307
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Table D.4. Experimental

Radial Location 7 LPI

182.8 0.178

187.9 0.173

190.5 0.170

193.0 0.180

data for

9 LPM

0.203

0.196

0.196

0.193

the rotating disk: 200 RPM, continued

11 LPM 13 LPM 15 LPM

0.223 0.244 0.297

0.223 0.241 0.287

0.218 0.236 0.279

0.213 0.234 0.279
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Table D.5. Experimental data for

Radial Location 7 LPi 9 LPI

50.80 O. 267 O. 267

76.20 O. 305 O. 295

81.28 O. 302 O. 300

86.36 0.295 0.295

91.44 0.292 0.297

96.52 O. 289 O. 297

101.6 O. 284 O. 295

106.7 O. 279 O. 292-

111.7 0.272 0.287

116.8 O. 262 O. 282

121.9 0.251 0.274

127.0 0.244 0.264

132.1 0.231 0.259

137.2 0.223 0.246

142.2 0.213 O. 236

147.3 O. 206 O. 229

152.4 0.198 0.218

157.5 0.193 0.203

162.5 O. 185 O. 201

167.6 0.183 0.195

172.7 0.175 O. 185

177.8 0.173 0.178

the rotating disk: 300

11 LPI 13 LPi

0.267 0.267

0.289 0.282

O. 289 O. 287

0.287 0.292

0.289 0.295

O. 292 O. 301

0.289 0.303

0.292 0.305

O. 292 O. 304

O. 289 O. 305

O. 287 O. 303

O. 284 O. 303

O.274 O.297

O.262 O.288

O. 251 O. 280

O. 244 O. 279

O. 234 O. 264

O. 226 O. 250

O. 221 O. 250

O. 208 O. 239

O. 203 O. 230

0.195 0.227

RPM

15 LPI

0.267

0.281

0.282

0.285

0.289

O.295

O.302

0.310

0.314

0.317

0.321

0.319

0.313

0.308

O. 298

O. 290

O.284

O.272

O.265

0.257

0.247

0.245
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Table D.5. Experimental data for the rotating disk:

Radial Location 7 LP][ 9 LPI 11 LP][

182.8 0.165 0.175

300 EPi, continued

187.9 0.160 0.168

190.5 0.160 0.168

13 LPM 15 LPH

0.193 0.218 0.233

0.183 0.209 0.219

0.183 0.209 0.227

318


